

Innovations in Hearing Health Technology

Brent Edwards, Ph.D. CTO, Earlens Corp. Menlo Park, CA

> FTC Workshop "Now Hear This" April 18th 2017

What:

Generating value from creativity

How:

Identify unmet needs

Unmet Needs of People With Hearing Loss

• Improvements to:

- Audibility
- Loudness growth
- Sound quality
- Naturalness
- Speech understanding
- Feedback
- Localization ability
- Distortion

- Listening effort
- Ease of use
- Reduced stigma
- Reduced occlusion
- Comfort
- Source segregation
- Auditory focus
- Musical timbre

Restoring Audibility is Insufficient

Humes, 2007

Hearing Aid Industry Has Developed Innovations to Address the Unmet Needs of Those With Hearing Loss

- Multiband compression
- Noise reduction
- Feedback Cancellation
- Wind reduction
- Fitting Algorithms
- Directionality
- Frequency Lowering
- Decision-making intelligence
- Datalogging
- Music-specific processing

- Patient self-fine-tuning
- Improved fidelity transducers
- More powerful DSPs
- Wireless Ear-to-Ear: beamforming, MVDR
- Rechargeable batteries
- Improved cosmetics
- Made for iPhone wireless
- Remote microphones and other accessories
- Tele-audiology

Hearing Aid Industry Has Developed Innovations to Address the Unmet Needs of Those With Hearing Loss

- Multiband compression
- Noise reduction
- Feedback Cancellation
- Wind reduction
- Fitting Algorithms
- Directionality
- Frequency Lowering
- Decision-making intelligence
- Datalogging
- Music-specific processing

- Patient self-fine-tuning
- Improved fidelity transducers
- More powerful DSPs
- Wireless Ear-to-Ear: beamforming, MVDR
- Rechargeable batteries
- Improved cosmetics
- Made for iPhone wireless
- Remote microphones and other accessories
- Tele-audiology

EEG Measures of Change in Activation for Binaural Algorithm

Effect of improving Speech-to-noise ratio

Effect of binaural algorithm

Winneke et al., 2016

Technology Reduces Cognitive Load

Desjardins and Doherty, 2014

Sarampalis et al., 2009

Cognitive Ability Affects Hearing Aid Benefit

Lunner and Sundewall-Thorén, 2007

Hearing Industry Research Consortium

- Has provided \$300,000 to academic researchers in each of the following areas:
 - Cognition and hearing aid interaction
 - Dynamic spatial listening
 - Neurodegeneration
 - Big data analysis of treatment and outcome
 - Auditory ecology and quality of life

Silicon Valley Innovation

• An ecosystem exists to support ideas that address unmet needs

Silicon Valley Innovation

• An ecosystem exists to support ideas that address patient unmet needs

Earlens

- 140 employees
- Over \$120m invested to-date

FDA Hearing Aid Regulations

- Good Manufacturing Practices and Design Control are of little burden for a well-run company
 - Certainly does not impede the development of innovation

- Significant innovation by the hearing aid industry
 - Technology
 - Diagnostics
 - Outcome measures
- Innovation is alive and well for startups
- FDA is not a burden on innovation

References

- Desjardins, J. L. and K. A. Doherty (2014). "The effect of hearing aid noise reduction on listening effort in hearing-impaired adults." Ear Hear 35(6): 600-610.
- Humes, L. E. (2007). "The contributions of audibility and cognitive factors to the benefit provided by amplified speech to older adults." J Am Acad Audiol 18(7): 590-603.
- Lunner, T. and E. Sundewall-Thoren (2007). "Interactions between cognition, compression, and listening conditions: effects on speech-in-noise performance in a two-channel hearing aid." J Am Acad Audiol 18(7): 604-617.
- Sarampalis, A., et al. (2009). "Objective measures of listening effort: effects of background noise and noise reduction." J Speech Lang Hear Res 52(5): 1230-1240.
- Winneke, A., De Vos, M., Wagener, K., Latzel, M., Derleth, P., Appell, J., and Wallhoff, F. (2016). Reduction of listening effort with binaural algorithms in hearing aids: an EEG study. Amer Aud Soc Annual Conference, Scottsdale, AZ.