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Abstract 

Using data from Computer Monitor Auctions on e-Bay collected in 
2000, we estimate bidding functions by maximum likelihood using five 
different assumptions about the underlying distribution of independent 
private values. We assume these values come from the log-normal, the 
gamma, the Weibull, the Logistic or the Pareto distribution. We then es­
timate the consumer surplus in these auctions using two different method­
ologies. First we construct the expected consumer surplus and then we 
construct a lower bound for consumer surplus using a ”rational reassign­
ment” methodology. Using various distributions for the independent pri­
vate values will allow us to see how much consumer surplus estimates 
depend on this assumption, and we will also use various statistical tests 
to find the best fit to the data among the various distributions considered. 

1 Introduction  

It is well established that eBay is a significant economic marketplace. Econo­

mists have long hailed the price discovery power of auctions, but unfortunately 

∗Paper prepared for the FTC Roundtable: Economics of Internet Auctions, October  27th,  
2005, Washington, DC. 
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the cost of getting bidders together prevented their widespread usage. eBay 

overcame this problem by allowing people to auction items over the Internet. 

Because of this eBay has become a significant marketplace, and due to the 

economies of the marketplace they are likely to remain one for the significant 

future. However we are still unsure how much eBay benefits the economy. One 

measure of this benefit is the Consumer Surplus that eBay generates. This 

paper measures this important attribute in the market for Computer Monitors. 

We estimate bidders’ values and an exogenous entry process using maximum 

likelihood. Since we can not be certain of the true underlying distribution of bid­

ders values we estimate our function using multiple distributional assumptions. 

This allows us to estimate Consumer Surplus under different distributional as­

sumptions and test for sensitivity to distribution. It also allows us to test which 

distribution best fits the data and test how well each estimate performs against 

a non-specified non-parametric distribution. Our data set for this analysis is 

around 3000 PC color computer monitors with a screen size of between 14 and 

21 inches which were auctioned between February 23, 2000 and June 11, 2000. 

It is surprising how few attempts have been made to estimate Consumer 

Surplus. Song [10] estimates a semi-parametric model using both the second 

and third highest bids in university yearbook auctions. She constructs an in­

novative semi-parametric methodology using the second and third highest bids 

and estimates the median Consumer Surplus in university yearbook auctions 

at $25.54. In comparison our methodology is to search over parametric models 

using maximum likelihood. Not only does this dispense with the need to use 

the third highest bid (which is of questionable trustworthiness) but it allows us 

to suggest a best parametric model which might be applicable in other research. 

Bapna, Jank, and Shmueli [5] use a revolutionary new data collection technique 

that allows them to directly observe a bidder’s stated value. While this is a 

brilliant technique unfortunately they have a very heterogenous data set and 
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do not estimate a structural bidding function, however their median Consumer 

Surplus (in all categories) is $3.53. Several other articles have touched on this 

subject: Bapna, Paulo and Gupta [2] , [3] and Bapna, Goes, Gupta, and Jin 

[4] but these papers are focused on mechanism design and look at first price or 

multi unit auctions and thus are outside of the scope of this paper. 

eBay has two different auction formats. The common format is an English 

auction with a hard stop time. This is the type of auction used in 87 percent of 

our data set and the type of auctions on which we focus. When our data was 

collected bidding goes on from three to ten days and stops at a preset time. 

Our estimation techniques are based on methods developed by Donald and 

Paarsch [7]. Unlike that paper we do not have to estimate the minimum or 

maximum value a bid can take since in our auctions the natural lower boundary 

is zero and there is no reasonable binding upper boundary–we assume it is 

infinity with extremely low probability. We also are able to estimate a full like­

lihood function since our data set includes all auctions where no one decided to 

bid. There are several other methodologies currently available in the literature. 

First of all is the semi-parametric technique found by Song [10]. This requires 

the use of some of the data from the third highest bid. While for clear theo­

retic reasons one can always assume that the second highest bid is a bidders’ 

value these techniques do not provide the same guarantee for the third highest 

bid. Instead you have to rely on the bidders planning not to update their bid– 

which they frequently do. This could potentially bias the results. As well there 

are the usual problems with slow convergence of non-parametric techniques. 

Furthermore while our models are more restrictive finding the best fit is more  

informative than with non-parametric techniques. With non-parametric tech­

niques comparing distributions for different goods is difficult, with parametric 

maximum likelihood we can easily compare our results across different product 

categories and observe if there is some fundamental underlying distribution of 
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values. Another interesting technique is a Bayesian methodology developed in 

Bajari and Hortaçsu [1]. However these techniques require that the bidding 

functions are linearly scalable, a restriction unnecessary with our approach and 

violated by our structural form. A final technique is a Non-linear Simulated 

Least Squares methodology developed by Laffont, Ossard, and Vuong [9]. This 

approach overcomes the complexity of calculating the likelihood function by 

simulating the auctions, and is a flexible methodology that can be used for 

many models where bidders have private values. We have used this technique 

in previous papers (Gonzalez, Hasker, and Sickles [8]) but in this paper since 

maximum likelihood is feasible we prefer the more standard approach. 

2 The Data Set and Our Collection Techniques. 

eBay saves all information about closed auctions on their website for a month 

after the auction closes. This allows people who participated in the auction 

to verify the outcome, and provides the source for our data set. Our data was 

collected using a “spider” program which periodically searches eBay for recently 

closed computer monitor auctions and downloads the pages giving the item 

description and the bid history. Software development was done in Python–a 

multi-platform, multi-OS, object-oriented programming language. It is divided 

into three parts. It first goes to eBay’s site and  collects the  item  description  

page and the bidding history page. It next parses the web pages, and makes 

a database entry for each closed auction. The final part iterates through the 

database entries stored, and creates a tab-delimited ASCII file. This method 

has allowed us to collect information on approximately 9000 English auctions 

of PC computer monitors. 

The original data processing program did not process all of the data. It pro­

vided us with the core of the data which was augmented with further processing 
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of the raw html files. Using string searches we have managed to collect extensive 

descriptive information for the entire data set. With further data processing we 

have managed to collect all of the bidding histories. This process provided us 

with information on the 6543 auctions that are used in the estimates. 

Our data set consists of PC color computer monitors with a size between 14 

and 21 inches which were auctioned between February 23, 2000 and June 11, 

2000. All monitors are in working order, and we ignored touch screen monitors, 

LCD monitors, Apple monitors, and other types of monitors that are bought 

for different purposes than the monitors in our sample. Also, if there were any 

bid retractions or cancellations (this happened in 7.4 percent of the auctions) 

we dropped the observation because the retractions might indicate collusion. 

Descriptive variables except for monitor size were constructed using string 

searches. In Gonzalez, Hasker, and Sickles [8] the strings that were used for 

each variable are detailed. This allowed us to collect data on whether there was 

a secret reservation price, whether it was met, monitor resolutions, dot pitch, 

whether a warranty was offered, several different brand names, whether the 

monitor was new, Like-New, or refurbished, and whether it was a flat screened 

monitor. “Brand name” is used for monitors that are from one of the ten 

largest firms represented in our data set. These firms are Sony, Compaq, NEC, 

IBM, Hewlett Packard, Dell, Gateway, Viewsonic, Sun, and Hitachi in order of 

size. Sony has around a 10 percent market share, the smallest are all around 3 

percent, in total these 10 firms represent 57 percent of the market. Dot pitch 

and resolution are not reported in all of the auctions. Dot Pitch is reported in 

35 percent of the auctions, resolution in 58 percent. In the appendix in Section 

7 the descriptive statistics of variables of interest are presented. 
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3	 Model and the Maximum Likelihood Func
tions. 

We will use maximum likelihood to estimate bidders’ values and an exogenous 

entry process in eBay auctions. 

We assume that bidders’ values are log-linear in a set of auction specific 

characteristics xn and their private value ρi. The  formula  thus  is:  

n	 o 
w 0ln bn = max  ln rn, xnβ + ln  ρ(2:n

I)	 (1) 

(2:I)where ρn is the value of the second highest bidder in auction n. We will allow 

for various models of the distribution of bw .n 

Let Fn (β) be the cumulative distribution function (CDF) of the bidders’ 

values and fn (β) be the probability density function (PDF)–where β may 

include some distribution specific coefficients. Denote D0 as the dummy which 

equals one if there are no bidders, and D1 as the dummy which equals one if 

there is one bidder. Then if I is the number of bidders the likelihood of auction 

n given I is: 

³ ´ D0


ln (β|I) =  Fn (β)
I ∗
³	 ´ D1I−1I (1 − Fn (β)) Fn (β) ∗ ³ ´ 1−D0−D1I−2I (I − 1) (1 − Fn (β)) Fn (β) fn (β) . 

I will be a stochastic variable that can range from In–the number of bidders 

who bid in this auction–to I–an arbitrary upper bound on the number of 

bidders in any auction. Notice that just because we observe only In bidders in 

an auction does not mean there might not have been more. More bidders might 

have come to the auction but realized they did not want to bid. 

The number of bidders in an auction will be determined by a Poisson entry 

process. The parameter of the entry process, λn, will be log-linear in a set 
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of auction specific characteristics zn–where xn ⊆ zn. Some auction charac­

teristics might affect entry but not values, but we assume that if the auction 

characteristic affects values it must affect entry. The estimated functional form 

for entry is thus: 

lnλn = zn
0 γ + ln νn 

Letting Tn be the length of the auction (Tn ∈ {3, 5, 7, 10}) and  Dsr be a dummy 

which is one if there is a secret reservation price. Then our total likelihood for 

auction n is: 
ΣI (λnTn)

i 

e−λnTn ln (β|I)i=I i!
ln (β, γ) =  n . 

ΣIi=Dsr 

(λn
i
T
! 
n)
i 

e−λnTn 

I is increased by one if there is a secret reservation price, thus we are following n 

Bajari and Hortaçsu [1] in treating the auctioneer as another bidder if there is 

a secret reservation price. 

Notice that we can use full maximum likelihood since our data collection 

technique captures all auctions that do not result in sales. In general data 

only includes auctions that result in a sale, making ours a rare example of full 

maximum likelihood estimation in auctions. 

The choice of Ī is obviously arbitrary, to derive the estimates we choose 

Ī = 30, and then tested the results when Ī = 50. This change did not change 

the coefficients, thus it appears our choice of Ī = 30 is sufficient. 

3.1 The Distributions: 

Since we can  not  be  certain  a-priori what the true distribution of bidders values 

is we test several different distributions: the Log-Normal, Weibull, Gamma, 

Logistic, and Pareto. 

The PDF of the Log-Normal is: 

2 √ 
1 −(ln bw −x 0 β) /2σ2 

n nfn (β) =  e 
σ 2π 

we write β = {β, σ} for simplicity. The PDF of the Weibull is: 
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� �α
α−1 bw 

) x0(bwn 
n− 
βfn (β) = α

β )
α e e n 

where β = {β, α}. The  parameter  α is the shape parameter of the Weibull dis­

tribution, and note that we estimate lnα to avoid this parameter being negative. 

The PDF  of  the Gamma  is:  

α−1 bw 

0xe(
 n

1 (bwn ) − n 
x0 e neαβ )

βfn (β) =  
Γ (α) (ex0 n 

and again β = {β, α}. Again the parameter α is the shape parameter of this 

distribution and we estimate lnα. The PDF of the Logistic is: Ã !−1 
 Ã !−1 

 
bw bw 
n n 1
− − 1− 1 + e x0 n β

0 β 
x
fn (β) =  1 + e e ne 0 

exnβ 

notice that this distribution does not have another parameter. The PDF of the 

Pareto is: ¶−(α+1)µ

bw 
nα


fn (β) =  1 + 
0 
ex

again β = {β, α} and α is the shape parameter of this distribution and we 

estimate lnα. 

4 The Estimates 

Estimates are based on a subset of the complete data set in order to allow 

for out of sample specification tests. These have not yet been carried out. 

We also will consider an alternative models of entry. These results can only 

be considered preliminary. Suggestions on alternative specifications would be 

greatly appreciated. 

0β βexn n

0 β ) and  then  We first present the estimates of the exogenous values (exn

we present our estimates of the parameter of the entry process (Lambda). 

The right hand side variables in our models are the size of the monitor, diagonal 

screen size, the dot pitch (the distance between dots on the screen), resolution, 

8 



and size of picture seen on the monitor.  We also have a series  of  dummies  

indicating whether or not the monitor is New, Like New, or Refurbished (the 

omitted category is Used) and whether or not the monitor has a Warranty, is a 

Brand Name, or is Flat panel. The final variable is the Seller’s Feedback. This 

increases by one with every sale that results in a pleased customer, so is both 

an indicator of the Seller’s experience and reputation. 

<insert Table 1 about here> 

Results are in Table 1 in the Appendix. We first note the general stability of 

coefficients across estimates. The only coefficients which seem to meaningfully 

vary are two dummies, the “Like New” dummy and the Warranty dummy. 

Both of these coefficients are significantly smaller with Logistic private values. 

In general it seems Refurbished monitors are no better than Used monitors. 

These are monitors that have been “rebuilt” by the auctioneer and apparently 

bidders do not trust that the auctioneer has done a good job. Also, Brand 

Name monitors appear to have little relative value, possibly because Brand 

Name really conveys to the bidder that the monitor is a common brand. The 

only coefficient that has a surprising sign is the coefficient on the log of seller’s 

feedback. However, while the point estimate is negative in each regression the 

effect is neither statistically nor economically significant. In keeping with Song 

[10] we find that the total seller’s feedback does not affect the value of the 

good. In contrast Bajari and Hortaçsu [1] find that it has a significant positive 

coefficient–however coins are a very different class of goods and thus this might 

explain the difference our results. 

While the differences in coefficients are generally small the exogenous value 

of a computer monitor can be very different for a given auction using the dif­

ferent techniques and the summary statistics of these values differ significantly 

as indicated in Table 2. 
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Table 2-Predicted Exogenous Values 
.


Average

Median


Standard Deviation

Minimum

Maximum


Log-Normal Weibull Gamma Logistic Pareto 
13.99 15.24 129.46 48.66 48.01 
10.17 11.25 93.1 37.19 36.97 
10.55 11.7 103 35.76 35.05 
3.23 3.47 28.41 12.64 12.01 
69.33 74.25 672.59 202.9 229.07 

The exponential is a function with a significant right skewness, and thus a 

few large observations will artificially inflate the average value. Therefore we 

prefer to look at the medians. The Log-Normal and Weibull distributions tend to 

produce very low estimates of exogenous value (around $10-$11), the Pareto and 

the Logistic produce a higher value (around $36-$37) and the Gamma produces 

a very high median value ($93). 

<Table 3 about here> 

The coefficients of the entry process presented in Table 3 are much less stable. 

The new right hand side variables in this regression are a square term for Seller’s 

Feedback–allowing for a decreasing marginal benefit of experience. We also 

have a series of category dummies–the default is the “general” classification 

but a seller is allowed to put the monitor into the ≤ 1700 screen, ≥ 1900 screen 

or the Monotonic sub-categories if they wish. Notice that all monitors that are 

put in the Monotonic sub-category are misplaced–all monitors in our data set 

are color monitors. The two final dummies are one if the auctioneer put a Secret 

Reserve on the item (an unobserved reservation price) and if this Secret Reserve 

was not met–or in our analysis the auctioneer “sold” the item to himself. 

Results for the entry process appear to be stable across distributions for 

the coefficients on Size and the dummies for Refurbished, Warranty, and Brand 

Name. Notice that while a high Resolution raises the item’s value it seems to 

lower the expected number of bidders. This indicates some heterogeneity in our 
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bidders. A high resolution means that for given screen size you can see a larger 

picture. This means that the details of the picture are smaller to the naked 

eye, and it is reasonable that some bidders do not want to pay more for such 

a monitor. Our results illustrate this, some bidders do not value Resolution 

and thus are not willing to bid on items with a high Resolution. The same 

tendency (though to a lesser degree) is found with flat screen monitors. While 

this is clearly a positive aspect not everyone will be willing to pay for it. In 

general this has a small negative effect on entry but a small positive effect on 

the monitor’s value. Notice as well that in this regression both Dot Pitch and 

Seller’s Feedback have a much more significant effect on entry than they do on 

the monitor’s value. The coefficients on Seller’s Feedback seems to suggest that 

“trust” is binary for our bidders. If a seller is not experienced then bidders 

might not want to buy his or her monitor, but if they decide to try and buy it 

they discount the seller’s lack of experience. 

The most troubling parameter in these regressions is the coefficient on the 

Secret Reservation Dummy. Bajari and Hortaçsu [1] found it had a negative 

coefficient and while it is theoretically possible that this could have no effect 

there is no theoretical explanation for it having a positive coefficient. A potential 

problem is that this variable is significantly correlated with the error term. 

Notice from the correlation table that there is a strong positive correlation 

between having a secret reservation price and both the sales price and number 

of bidders. The causation is probably that auctioneers who have a valuable 

monitor want to put a high reserve on it, but think this will drive bidders 

away. This leads them to use a secret reservation price. Unfortunately all of the 

variables that can not be captured in a regression–the brand name, the specific 

monitor model–will cause the auctioneer to use a Secret Reservation Price and 

cause bidders to be eager to buy that item. We will solve this problem in the 

future by instrumenting the Secret Reservation Price on the other right hand 
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side variables and other variables that we have not used in our regressions. We 

also will give the same treatment to the Open Reservation price–the traditional 

reservation price–and include this variable in our regression. 

There is significant heterogeneity in the expected number of bidders–though 

the variation is not large in absolute terms. 

Table 4-Predicted Values for Lambda, the Entry Parameter 
.


Average

Median


Standard Deviation

Minimum

Maximum


Log-Normal Weibull Gamma Logistic Pareto 
54.6 6358.57 7941.4 1263.9 3001.23 
5.63 7.83 9.89 3.67 5.23 
203.79 58569.11 71354.81 9042.86 24508.77 
0.01 0.11 0.01 0.01 0.01 
4189.82 2452401.44 3017199.93 391642.72 1074452.44 

These estimates seem to suggest that the median number of bidders is between 

3.5 and 10 in Internet auctions with an average across models of around 5. This 

is not a large variation in absolute terms but significant in percentage terms. 

The averages vary more widely, but again this is an exponential function so it 

has a large right skewness. 

5 Consumer Surplus 

. While the a-priori Consumer Surplus is a function of I the ex-post Con­

sumer Surplus is not and thus estimating ex-post Consumer Surplus is relatively 

straightforward exercise. This is in part because we do not have to calculate a 

summation over the possible values of I. Consumer surplus in auction n is: 

w 
(1:I) (2:I) n x wE

µ
v |v = 

b |I ≥ 2

¶ 

e n
0 β − bn n x0 β n e n 

The expectation is (for I ≥ 2): 

µ ¶ R ∞ 
³ 

(2:I) 
´³  ³ 

(2:I) 
´´ I−2 

bw v
(2:I) (I) (I − 1) zfn (z, β) fn vn , β  Fn vn , β  

E vn 
(1:I)|vn 

(2:I) = 
x
n 
0 β |I ≥ 2 = 

n ³ ³ ´´ ³ ´³ ³ ´´ I−2 ne (2:I) (2:I) (2:I)
(I) (I − 1) 1 − Fn vn , β  fn vn , β  Fn vn , β  R ∞ 

(2:I) zfn (z, β)vn= ³ ´ 
1 − Fn vn 

(2:I)
, β  

12 



when I = 1  this is: 

µ ¶ R ∞ 
³ ³ 

(2:I) 
´´ I−2 

w (2:I) (I) zfn (z, β) Fn vn , β  
n 

E vn 
(1:I)|vn 

(2:I) = 
e

r
x
n 
0 β |I ≥ 1 =

(I) 
³ 
v ³ 

v
(2:I)

, β  ́
´³ ³ 

v
(2:I)

, β  ́
´ I−2 n 

1 − Fn n Fn n R ∞ 
(2:I) zfn (z, β) 

= vn ³ ´ 
1 − Fn vn 

(2:I)
, β  

thus it is independent of I ≥ 1. 

Lemma 1 If I ≥ 1 then ex-post Consumer Surplus is independent of I, and  

thus independent of the entry process. 

Proof. See above. 

Using this insight we can estimate ex-post Consumer Surplus. Summary 

statistics for estimates of Consumer Surplus for the various distributions are 

given in Table 5.1 

Table 5-Expected Consumer Surplus 
Log-Normal Weibull Gamma Logistic Pareto 

Average

Median


Standard Deviation

Minimum

Maximum


$131.36 $718.41 $5210.20 NA $1815.60 
$97.21 $560.88 $3959.60 NA $1434.90 
$118.56 $563.99 $4146.20 NA $1320.90 
$7.91 $102.97 $757.82 NA $433.16 
$977.78 $3572.30 $27494.00 NA $8583.4 

These preliminary estimates of Consumer Surplus vary widely and are un­

reasonably high. Given that our median computer monitor sold for $100 even 

the most conservative estimate asserts that consumers are taking 49% of the 

available surplus. It is likely that these estimates are sensitive to the upper 

tail of the distribution. While we assume for estimation that a bidder can 

have an extremely private large value for the computer monitor there should 

be some reasonable upper bound. We are currently checking the sensitivity 

of these estimates to upper tail properties of the various distributions and to 

upper truncation of the distributions. 
1 The estimates for the Logistic regression are currently not available due to calculation 

difficulties. 
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Given the wide range and large size of these estimates this makes it of great 

interest to try to estimate Consumer Surplus using an alternative methodol­

ogy. We can also construct a “lower bound” estimate for Consumer Surplus 

by assuming that vn 
(1:I) 

= vn 
(2:I) in every auction. We can then reassign bidders 

to  see how  much  someone with the  value of  vn 
(2:I) could win in other auctions 

in our data set. If I was a constant in our regressions this would be a precise 

lower bound. As it is it provides an estimate for Consumer Surplus that is 

independent of the tails of our distributions. 

Table 6-Lower Bound Estimates of Consumer Surplus 
. Log-Normal Weibull Gamma Logistic Pareto 

Average

Median


Standard Deviation

Minimum

Maximum


$57.78 $56.771 $55.78 $57.15 $57.75 
$36.49 $36.229 $35.85 $36.48 $36.39 
$73.97 $72.798 $71.12 $73.8 $75.05 
$0.00 $0.00 $0.00 $0.00 $0.00 
$1914.10 $1919.10 $1910.00 $1917.80 $1946.20 

These lower bound estimates of Consumer Surplus are in Table 6. The estimates 

are quite comparable across different distributions and are much more stable 

than those from Table 5. These result point to a significant amount of consumer 

surplus captured in these auctions. Compared with the median sales price of 

$100 the results indicate that consumers are capturing at least 26% of the total 

surplus which is quite significant considering the conservative assumption made 

to derive these last estimates. 

We are also constructing estimates of a-priori consumer surplus but as of 

yet those results are not available. 

6 Finding the best distribution. 

We can use two different types of tests for the preferred distribution of private 

values. 
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6.1 Tests based on the Likelihood. 

Since we have multiple distributional assumptions we will choose the distribution 

that minimizes one of three different information criteria, which are all very 

similar given our models. These criteria were intended to compare models which 

are very different in the number of parameters or observed variables. Since we 

hold these numbers nearly constant across our different models the test becomes 

essentially which distributional assumption yields the largest likelihood value, 

or alternatively, the smallest negative log-likelihood divided by the number of 

observations–the objective function we use in our estimation. The first criterion 

we use is the Akaike Information Criterion: ³ ´ 1 1ˆAIC = − log L β, γ̂ + k 
N N ³ ´ 
ˆwhere N is  the sample size,  L β, γ̂ is the likelihood, and k is the number of 

parameters. Another criteria that puts more of a penalty on complexity is the 

Bayesian Information Criterion or the Schwartz Criterion: ³ ´ 1 ˆ log (N)
BIC = − log L β, γ̂ + k 

N 2N 

Our final statistic will be the Browne—Cudeck Criterion [6] which is: ³ ´ 
BCC = − 

1 
log L β̂,  ̂γ + 

1 
k 

N N − p − 2 

where p is the number of observed variables. Given that N = 2934, p = 20  , 

and k ∈ {33, 34}, the difference in these measures is small. 

Table 7 

Log-Normal Weibull Gamma Logistic Pareto 
Objective Function 
AIC 
BIC 
BCC 

1.1039 3.7662 3.7245 3.8077 3.896 
1. 115 5 3. 777 8 3. 736 1 3. 8190 3. 907 6 
1. 150 2 3. 812 5 3. 770 8 3. 852 6 3. 942 3 
1. 115 6 3. 777 9 3. 736 2 3. 819 1 3. 907 7 
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The results from the different distributions for the AIC, the BIC, and the 

BCC criteria are in Table 7. The Log-Normal is clearly the best distribution 

by all measures while the second best is the Gamma. Notice that the order of 

all the criteria is the same as the order of the objective functions.2 

6.2	 Tests against the Non-Parametric distribution of Third 
Highest Values. 

In future analysis we will compare the distribution of third highest values to the 

uniform distribution in order to test whether any of our parametric distributions 

are close to the non-parametric true distribution of bidders’ values. 

Using the distribution of the third order statistic we can map each observa­

b3:I 

tion to the uniform, using the following function where v3:I = x
n 0 β : e n Z 3:I 

I! I−3 2Gn 
¡
v 3:I , β|I ¢ = 

v 

Fn (z, β) (1 − Fn (z, β)) fn (z, β) dz 
(I − 3)!2!0 

and: 
(λnTn)

i 

nGn 
¡
v 3:I , β, γ  

¢ 
= 
Σi
I 
=I i! e−λn

)

T

i

n Gn 
¡
v3:I , β|I ¢ 

. 
ΣIi=3 

(λn
i
T
! 
n e−λnTn 

We can then compare the resulting distribution to the uniform to see which 

is the best fit, and if we can accept the null that the distribution is the true 

underlying distribution of values. 

2 While these tests all resoundingly accept the Log-Normal we would like to caution this 
conclusion with some reduced form logic. The Log-Normal is the only distribution where 
we minimizes the log of the error terms. If our criteria was minimizing the sum of square 
errors clearly for reasonable β the sum of log errors would usually be smaller than the sum of 
absolute errors. 
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7	 Appendix: Tables, Descriptive Statistics and 
the Correlation Matrix 

Table 1 

. Estimates of the Exogenous Value. 

. Log-Normal Weibull Gamma Logistic Pareto 
Constant


.

Log, Size


.

Log, Dot Pitch


.

Dummy, No Dot Pitch


.

Log, Resolution


.

Dummy, No Resolution


.

Dummy, New


.

Dummy, Like-new


.

Dummy, Refurbished


.

Dummy, Warranty


.

Dummy, Brand Name


.

Dummy, Flat Screen


.

Log, Seller’s Feedback +1


.

Distribution Variable+


.

Number of Auctions


-Log Likelihood/Number of Auctions


-14.1874*** -14.2123 -11.9023*** -11.712 -12.4335*** 
( 4  .  9  4  )  (  2  5 .5 8  )  ( 1  .3  8  )  (  5  0 .  1 7  )  ( 2  .  4  1  )  

4.581 4.6543 4.7877*** 4.6516*** 4.3902*** 
( 7  .  2  8  )  (  9  0 .4 6  )  ( 0  .7  0  )  ( 0  .4  5  )  ( 0  .  4  2  )  

-0.8868 -0.9692 -0.9479 -0.7436 -0.9826 
( 1  .  3  7  )  ( 1  .8  9  )  ( 0  .9  5  )  (  1  5 .  9 4  )  ( 0  .  9  6  )  

1.1696 1.2171 1.1543 0.9294 1.228 
( 1  .  7  5  )  ( 2  .4  9  )  (  1  4 .  4 3  )  ( 3  .1  9  )  ( 1  .  5  6  )  

0.3465 0.3203 0.2487 0.1834 0.3388* 
( 2  .  0  2  )  ( 0  .3  9  )  ( 0  .8  1  )  ( 0  .3  1  )  ( 0  .  2  3  )  

2.591 2.4002 1.8994 1.3759 2.5007*** 
( 3  .  8  8  )  ( 2  .0  3  )  ( 1  .8  0  )  (  3  2 .  2 0  )  ( 0  .  8  7  )  

0.3671 0.3031 0.3279 0.238 0.2609 
(  5  8 .  2 2  )  ( 6  .4  8  )  ( 7  .3  5  )  ( 7  .0  2  )  ( 1  .  1  1  )  

0.2354 0.2198 0.2432 0.0751 0.1985 
( 6  .  1  7  )  (  1  6 .2 5  )  ( 7  .5  4  )  (  1  6 1  .  4  0 )  ( 1  .  6  8  )  

0.0127 0.0357 0.0512 0.0203 0.0044 
( 9  .  7  8  )  (  2  6 .4 4  )  ( 6  .9  1  )  ( 8  .3  1  )  ( 2  .  4  4  )  

0.1259 0.1238 0.1101 0.0567 0.1384 
( 7  .  9  6  )  ( 6  .2  8  )  ( 3  .1  8  )  ( 0  .7  4  )  ( 0  .  3  9  )  

-0.0055 0.0026 0.0043 0.0065 -0.0061 
( 1  .  4  9  )  ( 3  .3  0  )  ( 0  .6  4  )  ( 1  .8  4  )  ( 4  .  1  0  )  

0.237 0.2298 0.2527 0.1812 0.2127 
(  2  3 .  6 0  )  ( 5  .4  5  )  ( 1  .2  1  )  ( 6  .8  7  )  ( 3  5  .5  4  )  

-0.0222 -0.0204 -0.0263 -0.0252 -0.0146 
( 1  .  5  1  )  ( 0  .4  2  )  ( 1  .4  3  )  ( 0  .5  6  )  ( 0  .  1  9  )  

1.3528 -0.6531 -1.7121 NA 0.8402 
( 4  .  9  1  )  ( 1  .0  0  )  ( 2  .6  0  )  NA  ( 0  .  7  2  )  

2934 2934 2934 2934 2934 
1.1039 3.7662 3.7245 3.8077 3.896 

+ 
Fo r  t h e  L o g  -N o rm a l  t h is  P a ram e t e r  i s  t h e  S t a n d a rd  D ev ia t io n .  Fo r  t h e  Weib u l l ,  G am m a ,  a n d  Pa r e t o  t h i s  i s  t h e  lo g  o f  t h e  sh a p e  p a ram e t e r .  

S ta n d a rd  d ev ia t io n s  a r e  r e p o r t e d  i n  p a r e n th e s e s  b e low  t h e  c o e  ffi c i e n t s .  

* C o e  ffi c ie n t  i s  s ig n i  fi c a n t  a t  t h e  1 0%  L e ve l .  * *  C o e  ffi c i e n t  i s  s ig n ifi c a n t  a t  t h e  5%  L e v e l .  * * *  C o e  ffi c i e n t  i s  s ig n ifi c a n t  a t  th e  1%  L e v e l .  
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Table 3 
. Estimates of the Entry Parameter. 
. Log-Normal Weibull Gamma Logistic Pareto 

Constant -18.7408*** -11.2964*** -8.9873*** -14.2597*** -13.8536*** 
. ( 8  .  7  6  )  ( 1  .5  9  )  (  1  .  7 8 )  ( 1  . 7  5  )  ( 6  . 4  2  )  

Log, Size 4.751** 4.6517*** 4.5342*** 4.516*** 4.6355** 
. ( 2  .  6  6  )  ( 0  .5  1  )  (  0  .  5 4 )  ( 0  . 7  5  )  ( 2  . 7  2  )  

Log, Dot Pitch -13.3547 -10.4419 -10.6719*** -6.9808 -7.4747*** 
. ( 2  9  .3  3  )  (  2  3 3 .  3 4  )  (  4  .  0 6 )  (  4  2 .  2 3  )  ( 0  .  7  1  )  

Dummy, No Dot Pitch 15.7051*** 11.9219*** 12.2254*** 8.2244*** 8.4918 
. ( 6  .  5  0  )  ( 1  .2  1  )  (  1  .  7 5 )  ( 3  . 2  7  )  (  1 3 .  0 4  )  

Log, Resolution -1.4549** -1.9028 -2.1986 -0.9195* -1.0805 
. ( 0  .  7  6  )  (  2  5 .8 5  )  (  3  .  6 2 )  ( 0  . 6  2  )  ( 1  . 8  6  )  

Dummy, No Resolution -10.6756 -13.8705*** -15.9685*** -6.6961*** -7.9835*** 
. ( 3  1  .1  7  )  ( 1  .4  8  )  (  1  .  5 9 )  ( 1  . 1  5  )  ( 1  . 1  1  )  

Dummy, New 0.6895 7.5107 7.4086 7.3883 7.5322 
. ( 4  .  8  6  )  (  1  6 2  5 .  7 5  )  ( 9  4  3  .0  9  )  (  1  6 8  .2  9 )  (  2  0 1  .1  8 )  

Dummy, Like-new 1.4005 6.0785 6.5766 6.5504 6.6402 
. ( 7  .  2  2  )  (  2  7 8 .  1 9  )  (  1  1 1  9 .  2 3  )  (  1  4 4  .4  2 )  (  2  8 8  .7  0 )  

Dummy, Refurbished 0.0667 0.0394 0.0053 0.0888 0.1226 
. ( 4  5  .6  7  )  ( 7  .2  0  )  (  7  .  4 3 )  (  8  5 .  6 3  )  ( 1  .  2  4  )  

Dummy, Warranty 0.7048 0.8485 0.7892 1.0237 1.0245 
. ( 2  1  .0  9  )  (  9  5 .2 6  )  (  7  5 .  1 6  )  ( 3  . 9  9  )  ( 1  . 2  4  )  

Dummy, Brand Name 0.0447 0.0317 0.0218 0.0107 0.0506 
. ( 3  .  3  1  )  ( 1  .6  2  )  (  1  .  4 6 )  ( 4  . 3  4  )  ( 1  . 6  2  )  

Dummy, Flat Screen -0.3016 -0.2701 -0.3433 -0.0075 -0.1825 
. ( 5  1  .5  9  )  (  1  7 .5 5  )  (  7  .  1 1 )  ( 2  . 8  1  )  ( 1  . 2  0  )  

Log, Seller’s Feedback +1 2.0296 1.9942 2.1961 0.9276 1.4721 
. ( 8  .  1  2  )  ( 2  .6  6  )  (  3  .  4 9 )  ( 3  . 5  1  )  ( 1  . 2  1  )  

Log, (Seller’s Feedback +1)2 -0.9316 -0.9262 -1.027* -0.4004 -0.6663* 
. ( 1  .  6  6  )  ( 2  .6  6  )  (  0  .  7 2 )  ( 0  . 3  4  )  ( 0  . 4  2  )  

Category Dummy, ≤ 1700 Screen 0.7227 0.7289 0.727 0.4473 0.7222 
. ( 1  0  .6  0  )  ( 4  .9  2  )  (  2  .  0 1 )  ( 1  . 5  4  )  ( 9  . 5  0  )  

Category Dummy, ≥ 1900 Screen -0.5309 -0.4429 -0.4344 -0.6287 -0.4136 
. ( 1  8  .0  0  )  ( 2  .5  0  )  (  1  .  0 0 )  ( 1  . 8  1  )  ( 2  . 3  5  )  

Category Dummy, Monotonic -3.455 -1.2607 -3.772 -3.6809 -3.7338 
. ( 7  3  .3  3  )  ( 5  .4  4  )  (  7  9 .  1 1  )  (  6  3 .  7 6  )  (  2 6 .  2 1  )  

Dummy, Secret Reserve 1.444 1.4702 1.7837 0.9709 1.3793 
. ( 8  .  5  3  )  ( 9  .7  6  )  (  8  .  7 2 )  ( 1  . 9  4  )  (  5 6 .  8 0  )  

Dummy, Secret Reserve not met. -0.705 -0.3936 -0.6446 -0.4306 -0.3846 
. ( 1  1  .8  6  )  (  1  6 1 .  9 7  )  (  7  .  7 9 )  ( 1  . 8  2  )  ( 2  . 1  5  )  

Number of Auctions 2934 2934 2934 2934 2934 
-Log Likelihood/Number of Auctions 1.1039 3.7662 3.7245 3.8077 3.896 

S t a n d a rd  d e v ia t io n s  a r e  r e p o r t e d  i n  p a r e n th e s e s  b e low  t h e  c o e  ffi c i e n t s .  

* C o e  ffi c i e n t s  a r e  s ig n ifi c a n t  a t  t h e  1 0%  L ev e l .  * *  C o e  ffi c ie n t s  a r e  s i g n i  fi c a n t  a t  t h e  5%  L e ve l .  * * *  C o e  ffi c ie n t s  a r e  s ig n ifi c a n t  a t  t h e  1%  L e v e l .  
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A.1-Descriptive Statistics 
Number Mean Std. Dev. Skewness Median Maximum Minimum 

Sales Price (1) 135.7 132.85 2.01 100 1430 0.01 
Log, Size (2) 2.82 0.14 0.28 2.83 3.04 2.64 
Log, Dot Pitch (3) -.49 0.65 -0.58 0 0 -1.61 
Dummy, No Dot Pitch (4) 0.64 0.48 -0.56 1 1 0 
Log, Resolution (5) 4.32 3.4 -0.48 6.68 7.38 0 
Dummy, No Resolution (6) 0.38 0.49 0.49 0 1 0 
Dummy, New (7) 0.07 0.26 3.31 0 1 0 
Dummy, Like-new (8) 0.03 0.17 5.38 0 1 0 
Dummy, Refurbished (9) 0.13 0.33 2.23 0 1 0 
Dummy, Warranty (10) 0.03 0.17 5.51 0 1 0 
Dummy, Brand Name (11) 0.59 0.49 -0.36 1 1 0 
Dummy, Flat Screen (12) 0.18 0.38 1.71 0 1 0 
Log, Seller’s Feedback +1 (13) 3.9 1.95 -0.44 4.36 8.38 0 
Log, (Seller’s Feedback +1)∧2 (14) 7.7 4 -0.44 8.7 16.75 0 
Length of Auction (15) 5.08 2.16 0.65 5 10 3 
Category Dummy, <=17“ Screen (16) 0.62 0.49 -0.5 1 1 0 
Category Dummy, >=19“ Screen (17) 0.27 0.45 1.02 0 1 0 
Category Dummy, Monotonic (18) 0 0.05 22.06 0 1 0 
Dummy, Secret Reserve (19) 0.18 0.38 1.68 0 1 0 
Dummy, Secret Reserve not met. (20) 0.1 0.3 2.69 0 1 0 
Number of Bidders (21) 3.92 4.06 1.06 3 22 0 
Dummy, No Bidders (22) 0.27 0.45 1.02 0 1 0 
Dummy, One Bidder (23) 0.13 0.34 2.2 0 1 0 



A.2-Correlation Matrix of Variables 
( 1 )  1


( 2 )  0 .7 4  1


( 3 )  - 0 . 4 3  - 0 .3 1  1
 ( 1 8 )  1


( 4 )  - 0 .4  - 0 .2 9  1
 1
 ( 1 9 )  - 0 . 0 2  1


( 5 )  0 .1 6  0 .1 3  - 0 .2 9  - 0 .2 9  1
 ( 2 0 )  - 0 . 0 1  0 .7 1  1


( 6 )  - 0 . 1 4  - 0 .1 2  0 .2 9  0 .2 9  - 1  1
 ( 2 1 )  - 0 . 0 4  0 .2 8  0 .1 6  1


( 7 )  0 .2 2  0 .0 7  - 0 .0 9  - 0 .0 9  - 0 .0 1  0 .0 1  1
 ( 2 2 )  - 0 . 0 3  - 0 .2 3  - 0 .1 3  - 0 . 5 9  1


( 8 )  0 .0 2  - 0 .0 1  0 .0 1  0 .0 1  - 0 .0 1  0 - 0 .0 5  1
 ( 2 3 )  0 .0 7  - 0 .1 3  - 0 .0 9  - 0 . 2 8  - 0 .2 4  1


( 9 )  - 0 . 0 2  - 0 .0 1  - 0 .0 2  - 0 .0 1  - 0 .0 4  0 .0 4  - 0 .1 1  - 0 .0 6  1
 ( 1 8 )  ( 1 9 )  ( 2 0 )  ( 2 1 )  ( 2 2 )  ( 2 3 )  

( 1 0 )  0 .1 7  0 .1 2  - 0 .1 3  - 0 .1 3  0 .0 7  - 0 . 0 6  0 .1 3  - 0 .0 3  - 0 . 0 1  1


( 1 1 )  0 .0 1  0 .0 3  0 .0 1  0 .0 1  - 0 .0 1  0 .0 1  0 .0 1  - 0 .0 2  0 0 .0 1  1


( 1 2 )  0 .2 8  0 .2  - 0 .3 1  - 0 .3 1  0 .2 1  - 0 . 2  0 .1 1  - 0 .0 3  - 0 . 0 1  0 .1 4  - 0 .0 1  1


( 1 3 )  - 0 . 0 8  - 0 .0 5  - 0 .0 6  - 0 .0 6  0 .1 5  - 0 . 1 5  - 0 .1  - 0 .0 1  - 0 . 0 3  - 0 .0 1  - 0 .0 3  - 0 . 0 1  1


( 1 4 )  - 0 . 0 8  - 0 .0 5  - 0 .0 6  - 0 .0 5  0 .1 5  - 0 . 1 5  - 0 .1  - 0 .0 1  - 0 . 0 3  - 0 .0 1  - 0 .0 3  - 0 . 0 1  1
 1


( 1 5 )  0 .0 6  0 .0 4  0 .0 2  0 .0 2  - 0 .1 9  0 .1 8  0 .1 2  0 .0 4  0 .0 5  - 0 .0 1  0 - 0 . 0 1  - 0 .3 6  - 0 .3 6  1


( 1 6 )  - 0 . 5 3  - 0 .6 8  0 .2 1  0 .1 9  0 - 0 . 0 1  - 0 .0 3  0 - 0 . 0 1  - 0 .1 1  - 0 .0 1  - 0 . 0 9  0 .0 5  0 .0 5  - 0 . 0 7  1


( 1 7 )  0 .6 2  0 .7 9  - 0 .1 9  - 0 .1 7  0 .0 5  - 0 . 0 4  0 .0 7  0 .0 2  0 0 .1 3  0 .0 4  0 .1 1  - 0 .0 7  - 0 .0 7  0 .0 5  - 0 .7 8  1


( 1 8 )  - 0 . 0 2  0 .0 4  0 .0 3  0 .0 3  - 0 .0 1  0 .0 1  0 .0 2  - 0 .0 1  0 .0 1  - 0 .0 1  - 0 .0 1  0 - 0 .0 2  - 0 .0 2  0 .0 5  - 0 .0 6  - 0 .0 3  

( 1 9 )  0 .2 7  0 .2 3  - 0 .1 4  - 0 .1 4  0 .0 5  - 0 . 0 4  0 .1 3  0 .0 3  - 0 . 0 1  0 .0 5  0 .0 1  0 .2 6  - 0 .2 3  - 0 .2 3  0 .0 5  - 0 .0 9  0 .1 5  

( 2 0 )  0 .1 4  0 .1 4  - 0 .0 8  - 0 .0 8  0 .0 3  - 0 . 0 3  0 .1 1  0 .0 1  - 0 . 0 1  0 .0 4  - 0 .0 2  0 .2 1  - 0 .1 6  - 0 .1 6  0 .0 2  - 0 .0 4  0 .0 7  

( 2 1 )  0 .2 4  0 .2 3  - 0 .1 6  - 0 .1 6  0 .0 1  - 0 . 0 1  0 .0 8  0 .1 1  - 0 . 0 2  0 .0 3  0 0 .1 9  - 0 .0 5  - 0 .0 6  0 .0 7  - 0 .0 9  0 .1 8  

( 2 2 )  - 0 . 0 3  - 0 .0 4  0 .0 6  0 .0 7  0 .0 8  - 0 . 0 8  - 0 .0 3  - 0 .0 6  - 0 . 0 1  - 0 .0 2  - 0 .0 1  - 0 . 0 9  0 .0 9  0 .1  - 0 . 1 4  0 .0 1  - 0 .0 7  

( 2 3 )  - 0 . 0 8  - 0 .0 8  0 .0 3  0 .0 4  - 0 .0 2  0 .0 2  - 0 .0 3  - 0 .0 5  0 .0 2  0 .0 3  0 .0 3  - 0 . 0 7  0 .0 4  0 .0 5  0 .0 1  0 .0 2  - 0 .0 5  

( 1 )  ( 2 )  ( 3 )  ( 4 )  ( 5 )  ( 6 )  ( 7 )  ( 8 )  ( 9 )  ( 1 0 )  ( 1 1 )  ( 1 2 )  ( 1 3 )  ( 1 4 )  ( 1 5 )  ( 1 6 )  ( 1 7 )  


