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Abstract 

I analyze the equilibria of a game based on the ad auction used by 
Google and Yahoo. This auction is closely related to the assign­
ment game studied by Shapley-Shubik, Demange-Gale-Sotomayer and 
Roth-Sotomayer. However, due to the special structure of preferences, 
the equilibria of the ad auction can be calculated explicitly and some 
known results can be sharpened. I provide some empirical evidence 
that the Nash equilibria of the position auction describe the basic 
properties of the prices observed in Google’s ad auction reasonably 
accurately. 

�I received many helpful comments from Marc Berndl, John Lamping, Amit Patel, 
Rob Shillingsburg, Diane Tang, and Eric Veach. I am particularly grateful to Meredith 
Goldsmith for her close reading of the paper, which improved the exposition significantly. 
I also thank Jonathan Rosenberg for allowing me to publish these results. Email contact: 
hal@sims.berkeley.edu 
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I consider the problem of assigning agents a = 1, . . . , A to slots s = 1, . . . , S 
where agent a’s valuation for slot s is given by uas = vaxs. We number the 
slots so that x1 > x2 > · · · > xS so that all agents agree on their ordering of 
the slots, though each agent may value them differently. We also set xs = 0 
for all s > S and assume that the number of agents is at least equal to the 
number of slots plus 1. 

This problem is motivated by the ad auctions used by Google and Yahoo. 
In these auctions the agents are advertisers and the slots are positions on 
a web page. Higher positions receive more clicks, so xs can be interpreted 
as the clickthrough rate for slot s. The value va > 0 can be interpreted as 
the expected profit per click so uas = vaxs indicates the expected profit to 
advertiser a from appearing in slot s. The slots are sold via an auction. Each 
agent bids an amount ba, with the best clickthrough rate being assigned to the 
agent with the highest bid, the second-best slot to the agent with the second 
highest bid, and so on. Renumbering the agents if necessary, let vs be the 
value per click of the agent assigned to slot s. The price agent s faces is the bid 
of the agent immediately below him, so ps = bs+1. Hence the net profit that 
agent a can expect to make if he acquires slot s is (va − ps)xs = (va − bs+1)xs. 

Google’s ad auction generated about $1.5 billion in Q3 2005 so its financial 
success alone makes it worthy of study. We will also see that position auctions 
have a nice mathematical structure and a strong relationship to existing 
literature on two-sided matching models. Edelman et al. [2005] independently 
examine these auctions and develop related results. However, our treatments 
are somewhat different and I also add some empirical analysis. 

1 Nash equilibrium of position auction 

Consider Table 1 which depicts the positions, values, bids and payment as­
sociated with an auction with S = 4 available slots. We know that xs > xs+1 

by assumption and that bs > bs+1 by the rules of the auction. 
If agent 3 wanted to move up by one position, it would have to bid at 

least b2, the bid of agent 2. But if agent 2 wanted to move down by one 
position it would only have bid at least b4 = p3, the bid of agent 4. We see 
that to move to a higher slot you have to beat the bid that the agent who 
currently occupies that slot is making; to move to a lower slot you only have 
to beat the price that the agent who currently occupies that slot is paying. 

We assume that the agents choose their bids to maximize their expected 
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Position Value Bid Price CTR


1 v1 b1 p1 = b2 x1 

2 v2 b2 p2 = b3 x2 

3 v3 b3 p3 = b4 x3 

4 v4 b4 p4 = b5 x4 

5 v5 b5 0 0 

Table 1: Bidding for position 

profit given the bids made by the other agents. In equilibrium, each agent 
should prefer his current slot to any alternative slot, which motivates the 
following definition. 

Definition 1 A Nash equilibrium (NE) is a set of prices such that 

(vs − ps)xs � (vs − pt)xt for t > s (1) 

(vs − ps)xs � (vs − pt−1)xt for t < s (2) 

where pt = bt+1. 

Note that if the inequalities are strict and an agent changes his bid slightly 
it won’t affect his position or payment, so there will generally be a range of 
bids and prices that satisfy these inequalities. Also note that these inequali­
ties are linear in the prices. Hence, given (vs) and (xs) we can use a simple 
linear program to solve for the maximum and minimum equilibrium revenue 
attainable by the auction. 

The analysis of the position auction is much simplified by examining a 
particular subset of Nash equilibria. 

Definition 2 A symmetric Nash equilibrium (SNE) is a set of prices such 
that 

(vs − ps)xs � (vs − pt)xt for all t and s. 

Equivalently, 
vs(xs − xt) � psxs − ptxt for all t and s. 

Note that the inequalities characterizing an SNE are the same as the 
inequalities characterizing an NE for t > s, inequalities (1), but expressed 
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for all s and t. I will show in a series of short arguments that the symmetric 
Nash equilibria form a well-behaved subset of the Nash equilibria that can 
be calculated explicitly.1 

Fact 1 (Non-negative surplus) In an SNE vs � ps. 

Proof. Using the inequalities defining an SNE, 

(vs − ps)xs � (vS+1 − pS+1)xS+1 = 0, 

since xS+1 = 0. � 

Fact 2 (Monotone values) In an SNE, vs−1 � vs for all s. 

Proof. By definition of SNE we have 

vt(xt − xs) � ptxt − psxs (3) 

vs(xs − xt) � psxs − ptxt (4) 

Adding these two inequalities gives us 

(vt − vs)(xt − xs) � 0, 

which shows that (vt) and (xt) must be ordered the same way. � 

Fact 3 (Monotone prices) In an SNE, ps−1xs−1 > psxs and ps−1 > ps for 
all s. 

Proof. By definition of SNE we have 

(vs − ps)xs � (vs − ps−1)xs−1, 

which can be rearranged to give 

ps−1xs−1 � psxs + vs(xs−1 − xs) > psxs. 

This proves the first part. 

1It is worth observing that the set of prices (ps) for an SNE comprise a market equilib­
rium for the assignment problem; see e.g. Gale [1960]. We explore this connection further 
in section 4. 
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To prove the second part, note that since vs � ps by Fact 1, we can apply 
(1) to find 

ps−1xs−1 > psxs + vs(xs−1 − xs) � psxs + ps(xs−1 − xs) = psxs−1.� 

Earlier we motivated the definition of NE and SNE by assuming pt−1 > pt. 
The Monotone Prices fact shows that these inequalities follow from directly 
from the definition of SNE, so the earlier assumption was in fact redundant. 

Fact 4 (NE ≤ SNE) If a set of prices is an SNE it is an NE. 

Proof. Since pt−1 > pt, 

(vs − ps)xs � (vs − pt)xt � (vs − pt−1)xt. 

for all s and t. � 
The reason that the set of symmetric Nash equilibria is interesting is that 

it is only necessary to verify the inequalities for one step up or down in order 
to verify that the entire set of inequalities is satisfied. 

Fact 5 (One step solution) If a set of bids satisfies the symmetric Nash 
equilibria inequalities for s + 1 and s − 1, then it satisfies these inequalities 
for all s. 

Proof. I give a proof by example. Suppose that the SNE relations hold for 
slots 1 and 2 and for slots 2 and 3; we need to show it holds for 1 and 3. 
Writing out the condition and using the fact that v1 � v2, 

v1(x1 − x2) � p1x1 − p2x2 � v1(x1 − x2) � p1x1 − p2x2 

v2(x2 − x3) � p2x2 − p3x3 � v1(x2 − x3) � p2x2 − p3x3 

Adding up the left and right columns, 

v1(x1 − x3) � p1x1 − p3x3, 

as was to be shown. The argument going the other direction is similar. � 

These facts allow us to provide an explicit characterization of equilibrium 
prices and bids. Since the agent in position s does not want to move down 
one slot: 

(vs − ps)xs � (vs − ps+1)xs+1 
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Since the agent in position s + 1 does not want to move up one slot: 

(vs+1 − ps+1)xs+1 � (vs+1 − ps)xs. 

Putting these two inequalities together we see: 

vs(xs − xs+1) + ps+1xs+1 � psxs � vs+1(xs − xs+1) + ps+1xs+1. (5) 

Recalling that ps = bs+1 we can also write these inequalities as: 

vs−1(xs−1 − xs) + bs+1xs � bsxs−1 � vs(xs−1 − xs) + bs+1xs. (6) 

Defining �s = xs/xs−1 < 1, we can also write the inequalities as: 

vs−1(1 − �s) + bs+1�s � bs � vs(1 − �s) + bs+1�s. (7) 

The equivalent conditions (5)-(7) show that in equilibrium each agent’s 
bid is bounded above and below by a convex combination of the bid of the 
agent below him and a value—either his own value or the value of the agent 
immediately above him. The (pure strategy) Nash equilibria can be found 
simply by recursively choosing a sequence of bids that satisfy these inequal­
ities. 

We can examine the limiting cases by choosing the upper and lower 
bounds in inequalities (6). The recursions then become 

bU
s xs−1 = vs−1(xs−1 − xs) + bs+1xs (8) 

bL
s xs−1 = vs(xs−1 − xs) + bs+1xs (9) 

The solution to these recursions are: 

bU
s xs−1 =	

� 
vt−1(xt−1 − xt). (10) 

t�s 

bL =	
� 

vt(xt−1 − xt). (11)s xs−1 

t�s 

The starting values for the recursions follow from the fact that there are 
only S positions, so that xs = 0 for s > S. Writing out the lower bound on 
the bid for s = S + 1, we have 

bL
S+1xS = vS+1(xS − xS+1) 

= vS+1xS 

so that it is optimal for the first excluded bidder to bid his value. This is 
has the same logic as the usual Vickrey auction. If you are excluded, then 
bidding lower than your value is pointless, but if you do happen to be shown 
(e.g., because one of the higher bidders drops out) you will make a profit. 
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1.1 Logic of the bounds 

Of course, any bid in the range described by (5)-(7) is an SNE and hence an 
NE bid, but perhaps there are reasons why bidding at one end of the upper 
or lower bounds might be particularly attractive. 

Suppose that I am in position s making a profit of (vs − bs+1)xs. In Nash 
equilibrium my bid is optimal given my beliefs about the bids of the other 
agents, but I can vary my bid in range specified by (6) without changing my 
payments or position. 

What is the highest bid I can set so that if I happen to exceed the bid of 
the agent above me and I move up by one slot, I am sure to make at make 
at least as much profit as I make now? 

The worst case is where I just beat the advertiser above me by a tiny 
amount and end up paying my bid, bs, minus a tiny amount. Hence the 
breakeven case satisfies the equation 

worst case profit moving up = profit now 

(vs − bs
�)xs−1 = (vs − bs+1)xs. 

Solving for b� 
s gives us 

b� 
sxs−1 = vs(xs−1 − xs) + bs+1xs, 

which is the lower-bound recursion, (9). 
Alternatively, we can think defensively. If I set my bid too high, I will 

squeeze the profit of the player ahead of me so much that he might prefer 
to move down to my position. The highest breakeven bid that would not 
induce the agent above me to move down is 

his profit now = how much he would make in my position (12) 

(vs−1 − b� 
s)xs−1 = (vs−1 − bs+1)xs. (13) 

Solving for b� 
s gives us 

b� 
s xs−1 = vs−1(xs−1 − xs) + bs+1xs, 

which is the upper-bound recursion, (8). 
As a matter of practice, it seems to me that the first argument is com­

pelling. Even though any bid in the range (5) is a Nash bid, one might argue 
that setting that bid so that I make a profit if I move up in the ranking is a 
reasonable strategy. 
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2 NE revenue and SNE revenue 

Summing equations (10) and (11) over s = 1, . . . S gives us upper and lower 
bounds on total revenue in an SNE. If the number of slots S = 3, for example, 
the lower and upper bounds are given by 

RL = v2(x1 − x2) + 2v3(x2 − x3) + 3v4x3


RU = v1(x1 − x2) + 2v2(x2 − x3) + 3v3x3.


How do these bounds relate to the bounds for the NE calculated by the 
linear programming problems alluded to earlier? 

Since the set of NE contains the set of SNEs, one might speculate that the 
maximum and minimum revenues are larger and smaller, respectively, than 
the SNE maximum and minimum revenue. This is half right: it turns out that 
the upper bound for the SNE revenue is the same as the maximum revenue 
for the NE, while the lower bound on revenue from the NE is generally less 
than the revenue bound for the SNE. 

Fact 6 The maximum revenue NE yields the same revenue as the upper 
recursive solution to the SNE. 

NProof. Let (ps ) be the prices associated with the maximum revenue Nash 
equilibrium and let (pU

s ) be the prices that solve the upper recursion for the 
NSNE. Since NE ≤ SNE, the revenue associated with (ps ) must be at least as 

Ularge as the revenue associated with (ps ). 
From the definition of an NE, (1), we have: 

p Ns xs � p Ns+1xs+1 + vs(xs − xs+1). 

From the definition of the upper-bound recursion, (8), we have: 

p Us xs = p Us+1xs+1 + vs(xs − xs+1). 

The recursions start at s = S. Since xS+1 = 0 we have 

N U pS � vS = pS . 

It follows by inspecting the recursions immediately above that pU
s � pN

s for 
all s. Hence the maximum revenue from the SNE is at least as large as the 
maximum revenue from the NE, implying that the revenue must be equal. � 
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It is easy to construct examples where the minimum revenue NE has less 
revenue than the solution to the lower recursion for the SNE; this is not 
surprising since the set of inequalities defining the NE strictly contains the 
set of inequalities defining the SNE. So we have the general relations: 

maximum revenue NE = value of upper recursion of SNE � 

value of lower recursion of SNE � min revenue NE 

with the inequalities being strict except in degenerate cases. 

3 Previous literature 

We have already mentioned the recent analysis of Edelman et al. [2005]. 
However, there is a much older literature that is closely related to the position 
auction problem. 

Shapley and Shubik [1972] describe an assignment game in which agents 
are assigned objects with at most one object being assigned to an agent. 
Mathematically, let agent a’s evaluation of object s be given by uas. The 
assignment problem asks for the assignment of objects to agents that maxi­
mizes value. This problem can be solved by linear programming or by other 
algorithms. 

It turns out that an optimal assignment can be decentralized by means 
of price mechanism. That is, at an optimal assignment there will exist a set 
of numbers (pa), interpretable as the price of the object assigned to agent a, 
such that: 

uas − pa � uas − pb for all a and b. 

Hence at the prices (pa) each agent would weakly prefer the object assigned 
to him over any other object. 

Comparing this to the definition of the symmetric Nash inequalities, we 
see that the definitions are the same with uas = vaxs and pa = ba+1xs. 
Hence, the position auction game we have described is simply a competitive 
equilibrium of an assignment game that has a special structure for utility. 
However, the special structure is particularly natural in this context. In 
particular, we can explicitly solve for the largest and smallest competitive 
equilibrium due to the special structure of uas. 

Demange et al. [1986] construct an auction that determines a competitive 
equilibrium. However, the auction they construct is quite different from the 
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position auction. Roth and Sotomayor [1990], Chapter 8, contains an unified 
treatment of these results. Several papers have developed auctions that yield 
competitive equilibria for the assignment game; see Bikhchandani and Ostroy 
[2006] for a recent survey. 

4 Incentives 

We have seen that the optimal bids in the position auction will in general 
depend on the bids made by other agents. One might well ask if there is a 
way to find another auction structure for which agent a’s optimal bid depends 
only on its value. Is it possible to find an auction form that has a dominant 
strategy equilibrium? Demange and Gale [1985] show the answer is “yes,” 
using a variation on the Hungarian algorithm for the assignment problem. 

If we relax our conception of what an auction is, we can apply the well-
known Vickrey-Clarke-Groves mechanism to this problem. Leonard [1983] 
describes this for the general case, but the VCG mechanism takes a particu­
larly simple form for the special case we are considering here. 

Let us recall the basic structure of the VCG mechanism. Suppose a 
central authority is going to choose some outcome z so as to maximize the 
sum of the reported utilities of agents a = 1, . . . , A. Let agent a’s true utility 
function be denoted by ua(·) and its reported utility function by ra(·). 

In order to align incentives, the center announces it will pay each agent 
the sum of the utilities reported by the other agents at the utility-maximizing 
outcome. Thus the center announces it is going to maximize 

ra(z) + 
� 

rb(z) 
b�=a 

while agent a cares about 

ua(z) + 
� 

rb(z). 
b�=a 

It is easy to see that in order to maximize its own payoff, agent a will want 
to report its true utility function, that is, set ra(·) = ua(·), since this ensures 
that the center optimizes exactly what agent a wants it to maximize. 

We can reduce the size of the sidepayments by subtracting an amount 
from agent a that does not depend on its report. A convenient choice in this 
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respect is the maximized sum of reported utilities omitting agent a’s report. 
Hence the final payoff to agent a becomes 

ua(z) + 
� 

rb(z) − max 
� 

rb(y). 
y 

b� b�=a =a 

The payment made by agent a can be interpreted as the harm that its pres­
ence imposes on the other agents: that is the difference between what they 
get when agent a is present and what they would get if agent a were absent. 

In the context of assigning agents to positions, if agent s − 1 is omitted, 
each agent below agent s − 1 will move up one position while agents above 
s − 1 are unaffected. Hence the payment that agent s − 1 must make is 

VCG payment of agent s − 1 = 
� 

rt(xt−1 − xt), (14) 
t�s 

where rt is the reported value of agent t. In the dominant strategy VCG 
equilibrium, each agent t will announce rt = vt, so 

equilibrium VCG payment of agent s − 1 = 
� 

vt(xt−1 − xt). (15) 
t�s 

Comparing this to expression (11) this is easily seen to be the same as the 
lower bound for the symmetric Nash equilibria. 

This relationship is true in general, even for arbitrary uas. Demange 
and Gale [1985] show that the best (i.e., lowest cost) equilibrium for the 
buyers in the competitive equilibrium for the assignment problem is that 
given by the VCG mechanism. See Roth and Sotomayor [1990] for a detailed 
development of this theory, and Bikhchandani and Ostroy [2006] for a recent 
survey of related results. 

5 Bounds on values 

Returning to the symmetric Nash equilibrium analysis, it is possible to derive 
useful bounds on the unobserved values of the agents by using the observed 
equilibrium prices. 

Let ps = bs+1 be the equilibrium price paid by agent s in a particular 
symmetric Nash (or competitive) equilibrium. Then we must have: 

(vs − ps)xs � (vs − pt)xt. 
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Rearranging this we have 

vs(xs − xt) � psxs − ptxt. 

Dividing by xs − xt and remembering that the sense of the inequality is 
reversed when xs < xt, we have 

psxs − ptxt psxs − ptxt
min � vs � max . 
t>s xs − xt t<s xs − xt 

Furthermore, we know from Fact 5 that the max and the min are attained 
at the neighboring positions, so we can write 

ps−1xs−1 − psxs psxs − ps+1xs+1
� vs �


xs−1 − xs xs − xs+1


These inequalities have a nice interpretation: the ratios are simply the incre­
mental cost of moving up or down one position. 

We can recursively apply these inequalities to write 

p1x1 − p2x2 
v1 � � (16) 

x1 − x2 
p2x2 − p3x3 

v2 � � (17) 
x2 − x3 

. . . 

vS � pS	 (18) 

This shows that the incremental costs must decrease as we move to lower 
positions. This observation has three important implications. 

1. The inequalities give an observable necessary condition for a the ex­
istence of a pure strategy Nash equilibrium, namely, that each of the 
intervals be non-empty. The conditions are also sufficient in that if the 
intervals are non-empty, we can find a set of values that are consistent 
with equilibrium. 

2. The inequalities also yield simple bidding rule for the agents:	 if your 
value exceeds the marginal cost of moving up a position, then bid 
higher, stopping when this no longer is true. 
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3. Finally the inequalities motivate the following intuitive characterization 
of SNE: the marginal cost of a click must increase as you move to 
higher positions. Why? Because if it ever decreased, there would be an 
advertiser who passed up cheap clicks in order to purchase expensive 
ones. 

We can also do the same calculations for the NE inequalities which yields: 

psxs − pt−1xt psxs − ptxt
min � vs � max . (19) 
t>s xs − xt t<s xs − xt 

Note that the upper bounds for the NE (for t > s) are looser than for the 
SNE and that they now involve the entire set of bids, not just the neighboring 
bids. 

6 Geometric interpretation 

Figure 1 shows the clickthrough rates xs on the horizontal axes and SNE 
expenditure psxs = bs+1xs on the vertical axis. We refer to this graph as 
the expenditure profile. The slope of the line segments connecting each ver­
tex are the marginal costs described in the previous section which we have 
shown must bound the agents’ values. According to the above discussion, if 
the observed choices are an SNE, this graph must be an increasing, convex 
function. 

The profit accruing to agent s is �s = vsxs − psxs. Hence the iso-profit 
lines are given by psxs = vsxs − �s, which are straight lines with slope vs and 
vertical intercept of −�s. A profit-maximizing bidder wants to choose that 
position which has the lowest associated profit, as shown in Figure 1. The 
range of values associated with equilibrium are simply the range of slopes of 
the supporting hyperplanes at each point. 

This diagram also can be used to illustrate the construction of the SNE 
using the recursive solution outlined earlier. Suppose that there are 3 slots 
and we are given four values. Since we know that p3 = v4 from the boundary 
condition for the lower recursion, we draw a line with slope v4 connecting 
the points (0, 0) and (x3, v4x3). Next draw a line with slope of v3 starting at 
(x3, v4x3). The value of this line at x2 will be v4x3 + v3(x2 − x3), which is 
exactly the lower recursion. Continuing in this way traces out the equilibrium 
expenditure profile. 



7 APPLICATIONS TO AD AUCTIONS 14


psxs


expenditure profile 

isoprofit line 

xs


-profit 

Figure 1: Expenditure profile for SNE.


xs 

xsbs 1-

Figure 2: Expenditure profile for NE and SNE. 

We can also illustrate the NE bounds using the same sort of diagram. 
The lower bounds on Figure 2 shows the the SNE bounds, along with the 
NE bounds from inequalities (19). For the NE, the lower bounds are the 
same, while the upper bounds are looser (steeper) than the SNE. 

7 Applications to ad auctions 

Up until now we have described the abstract strategic structure of the posi­
tion auction. In order to apply this to the actual ad auction used by Google, 
we have to add some refinements. 

Google actually ranks the ads by the product of a measurement of ad 
quality and advertiser bid, rather than just the bid alone.2 We assume that 
the observed clickthrough rate for advertiser a in position s is the product of 

2See http://services.google.com/awp/en_us/breeze/5310/index.html. 

http://services.google.com/awp/en_us/breeze/5310/index.html
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this “quality effect” es, and a “position effect,” xs. Letting zs be advertiser 
s’s observed clickthrough rate, we write zs = esxs. 

Advertisers are ordered by esbs and each advertiser pays the minimum 
amount that is necessary to retain his position. Let qst be the amount that 
advertiser s would need to pay to be in position t. By construction we have 

qstes = bt+1et+1. 

Solving for qst we have 
qst = bt+1et+1/es. (20) 

Nash equilibrium requires that each agent prefer his position to any other 
position, recognizing that the cost and clickthrough rate of the other position 
depends on his ad quality: 

(vs − qss)esxs � (vs − qst)esxt. 

Substituting (20) into this expression and simplifying we have 

(esvs − bs+1es+1)xs � (esvs − bt+1et+1)xt. 

Letting ps = bs+1es+1 and pt = bt+1et+1 gives us 

(esvs − ps)xs � (esvs − pt)xt. 

We can now apply the same logic used in (16–18) to give us 

p1x1 − p2x2 
e1v1 � � (21) 

x1 − x2 
p2x2 − p3x3 

e2v2 � � (22) 
x2 − x3 

. . . 

eS vS � pS . (23) 

These are the testable inequalities implied by the symmetric Nash equilib­
rium model. 

Finally, we also have to mention the case of “non-fully sold pages” which 
are auctions where the number of ads displayed on the right-hand side is 
fewer than 8. In this case, the bottom ad on the page pays a reserve price 
which is currently set at 5 cents. 
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psxs acne treatment psxs air travel 

psxs antique 

xs


psxs bamboo flooring 

xs 

xs xs 

Figure 3: Examples of data and fits. 

8 Empirical analysis 

Given a set of position effects, quality effects, and bids we can plot xt versus 
expenditure btxt and see if this expenditure profile is increasing and convex. 
It turns out that this often is true. If the graph is not increasing and convex, 
we can ask for a perturbation of the data that does exhibit these properties. 

The question is, what to perturb? The natural variable to perturb is the 
ad quality, es, since this is the most difficult variable for the advertisers to 
observe and thus has the most associated uncertainty. Let (dses) be the value 
of the perturbed ad quality where (ds) is a set of multipliers indicating how 
much each ad quality needs to be perturbed to satisfy the Nash inequalities 
(21−23). Since the prices ps are linear functions of es, we can also think of 
the perturbations as applying to the prices. 

This model motivates the following quadratic programming problem: choose 
the perturbations (ds) to be as close as possible to 1 (in terms of squared 
error) constrained by the requirement that the SNE inequalities given in 
(21−23) are satisfied. 

Explicitly, the quadratic programming problem is 

min 
�

(ds − 1)2 

d 
s 
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Figure 4: Distribution of mean absolute deviations. 

ds−1ps−1xs−1 − dspsxs dspsxs − ds+1ps+1xs+1
such that � . 

(xs−1 − xs) (xs − xs+1) 

Since the constraints are linear in (ds), this is a simple quadratic program­
ming problem which can be easily solved by standard methods. This minimal 
perturbation calculation can be given a statistical interpretation; see Varian 
[1985]. However, we do not pursue the details of this interpretation here. 

Figure 3 shows some examples of expenditure profiles using the actual 
data along with the best fitting increasing, convex relationship. (The nu­
meric values on the axes have been removed since this analysis is based on 
proprietary data.) 

It can be seen that the general shape of the expenditure profile tends to 
be increasing and convex as the theory predicts. Furthermore, it often rather 
flat at least in positions 3-8. One explanation for the increased expenditure 
on positions 1 and 2 on the right-hand side is that Google will promote ads 
in these slots to the top-of-page position under certain conditions. Thus 
advertisers may want to bid extra to get to right-hand side positions 1 and 
2, hoping to be promoted to a top spot. 

I examined the bids for a random sample of 2425 auctions involving at 
least 5 ads each on a particular day. Solving the quadratic programming 
problems yields a set of minimal perturbations for each auction required to 
make that auction satisfy the SNE inequalities. For each auction I define the 
mean absolution deviation to be 

�
s

S 
=1 |ds − 1|/S, where S is the number of 

advertisers in the auction. 
Figure 4 depicts a histogram of mean absolute deviations necessary to 

satisfy the SNE inequalities; as it can be seen the deviations tend to be quite 
small, with the average absolute deviation of the perturbations being 5.8 
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Psn raw LB raw UB pert LB pert UB price


1 1.19 → 1.19 → 0.48 
2 1.29 2.26 1.15 2.26 0.60 
3 0.60 1.66 1.19 1.48 0.48 
4 0.72 0.30 0.60 0.61 0.23 
5 1.68 1.79 1.47 1.49 0.40 
6 0.23 0.84 0.34 0.74 0.07 
7 1.32 0.83 1.08 1.19 0.24 
8 0.05 1.63 0.05 1.33 0.21 

Table 2: Bounds on values 

percent and the median being 4.8 percent. Very few of the mean absolute 
deviations are larger than 10 percent. I conclude that relatively small per­
turbations are required to make the observations consistent with the SNE 
models. Since the NE inequalities are weaker than the SNE inequalities, the 
required perturbation for consistency with Nash equilibrium would be even 
smaller. 

We can use the procedure for estimating the bounds on v described in 
section 5 to determine empirically the relationship between the bids and the 
values. For example, Table 2 shows the “raw” upper and lower bounds on 
values for a particular keyword calculated by using the observed incremen­
tal cost along with the upper and lower bounds on value calculated using 
the perturbed values from the quadratic program. The last column is the 
price of the click. In this example, the lower bounds sometimes exceed the 
upper bounds for the raw data, but the perturbed data satisfy the bounds 
by construction. The prices are not necessarily monotone due to the quality 
adjustment but the price times quality adjustment (not shown) is always 
monotone. 

As can be seen from the table, the estimated value of a click to these 
bidders appears to be somewhere around a dollar and the advertisers are 
paying around fifty cents a click. 
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Appendix: Bayes-Nash equilibrium 

Since the ad auction game that motivated this study runs continuously, it is 
reasonable to assume that the bidders are able to extract enough informa­
tion about other bidders’ behavior to find their way to a Nash equilibrium. 
However, it is also of interest to examine the Bayes-Nash equilibria, which 
might be appropriate in a game with substantially less information. 

As it turns out the analysis is a straightforward variation of the classical 
analysis of a simple auction. To see this, let us first review the classical 
analysis. Let v be the value of a particular bidder, P (v) the probability that 
he wins the auction, and p(v) his expected payment. The bidder’s objective 
is to maximize expected surplus S(v) = vP (v) − p(v). 

In the position auction context, we let P(1)(v) be the probability that the 
player has the highest bid, P(2)(v) the probability that the player with value 
v has the second-highest bid and so on. If there are 3 positions, the surplus 
becomes 

S(v) = v[P1(v)x1 + P2(v)x2 + P3(v)x3] − p(v). 

The first term is the expected surplus to a bidder with value v, recognizing 
that it gets x1 clicks if it ends up in the first position, x2 clicks if it ends up 
in the second position, and so on, with each click being worth v. In a simple 
auction, the value of coming in second is zero. In a position auction, the 
value of coming in second is vx2. 

Define H(v) = P(1)(v)x1 + P(2)(v)x2 + P(3)(v)x3 and write the surplus as 

S(v) = vH(v) − p(v). 

It is not hard to see that H(v) has the relevant properties of a CDF. It 
is monotone, since it is a weighted sum of monotone functions. Furthermore 
if vL and vU are the upper and lower bounds on v, H(vL) = 0 and H(vU ) = 
x1 = a constant. 

All of the standard properties of a simple auction carry over to the po­
sition auction, including revenue neutrality, the derivation of the optimal 
reserve price, and so on. Hence the Bayes-Nash equilibrium of a position 
auction is a straightforward generalization of the Bayes-Nash equilibrium of 
a simple auction. 



20 REFERENCES 

References 

Sushil Bikhchandani and Joseph M. Ostroy. From the assignment model to 
combinatorial auctions. In Peter Cramton, Yoav Shoham, and Richard 
Steinberg, editors, Combinatorial Auctions. MIT Press, Cambridge, MA, 
2006. 

Gabrielle Demange and David Gale. The strategy structure of two-sided 
matching markets. Econometrica, 53:873–878, 1985. 

Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auc­
tions. Journal of Political Economy, 94(4):863–72, 1986. 

Benjamin Edelman, Michael Ostrovsky, and Michael Schwartz. Internet ad­
vertising and the generalized second price auction. NBER Working Paper, 
11765, November 2005. 

David Gale. The Theory of Linear Economic Models. University of Chicago 
Press, Chicago, 1960. 

Herman B. Leonard. Elicitation of honest preferences for the assignment of 
individuals to positions. Journal of Political Economy, 91:461–79, 1983. 

Alvin Roth and Marilda Sotomayor. Two-Sided Matching. Cambridge Uni­
versity Press, 1990. 

Lloyd Shapley and Martin Shubik. The assignment game I: the core. Inter­
national Journal of Game Theory, 1:111–130, 1972. 

Hal R. Varian. Nonparametric analysis of optimizing behavior with mea­
surement error. Journal of Econometrics, 30(1):445–458, 1985. Reprinted 
in New Approaches to Modeling Specification Selection, and Econometric 
Inference, William B. Barnett and A. Ronald Gallant, eds., Cambridge 
University Press, 1990. 


