
Invasive Browser Sniffing and Countermeasures

Markus Jakobsson Sid Stamm
Indiana University Indiana University

Bloomington, Indiana USA Bloomington, Indiana USA

markus@indiana.edu sstamm@cs.indiana.edu

ABSTRACT
We describe the detrimental effects of browser cache/history
sniffing in the context of phishing attacks, and detail an ap­
proach that neutralizes the threat by means of URL person­
alization; we report on an implementation performing such
personalization on the fly, and analyze the costs of and se­
curity properties of our proposed solution.

Categories and Subject Descriptors
H.4.3 [Information Systems]: Communications Applica­
tions—Information browsers

General Terms
Security, Human Factors

Keywords
Browser cache, cascading style sheets, personalization, phish­
ing, sniffing.

1. INTRODUCTION
It is commonly believed that phishing attacks increasingly

will rely on contextual information about their victims, in
order to increase their yield and lower the risk of detection.
Browser caches are ripe with such contextual information,
indicating whom a user is banking with; where he or she
is doing business; and in general, what online services he or
she relies on. As was shown in [2, 8, 4], such information can
easily be “sniffed” by anybody whose site the victim visits.
If victims are drawn to rogue sites by receiving emails with
personalized URLs pointing to these sites, then phishers can
create associations between email addresses and cache con­
tents.

Phishers can make victims visit their sites by spoofing
emails from users known by the victim, or within the same
domain as the victim. Recent experiments by Jagatic et al.
[3] indicate that over 80% of college students would visit
a site appearing to be recommended by a friend of theirs.
Over 70% of the subjects receiving emails appearing to come
from a friend entered their login credentials at the site they
were taken to. At the same time, it is worth noticing that
around 15% of the subjects in a control group entered their

Copyright is held by the International World Wide Web Conference Com­
mittee (IW3C2). Distribution of these papers is limited to classroom use,

and personal use by others.

WWW 2006, May 23–26, 2006, Edinburgh, Scotland.

ACM 1-59593-323-9/06/0005.

credentials; subjects in the control group received an email
appearing to come from an unknown person within the same
domain as themselves. Even though the same statistics may
not apply to the general population of computer users, it is
clear that it is a reasonably successful technique of luring
people to sites where their browsers silently will be interro­
gated and the contents of their caches sniffed.

Once a phisher has created an association between an
email address and the contents of the browser cache/history,
then this can be used to target the users in question with
phishing emails that – by means of context – appear plausi­
ble to their respective recipients. For example, phishers can
infer online banking relationships (as was done in [4]), and
later send out emails appearing to come from the appro­
priate financial institutions. Similarly, phishers can detect
possible online purchases and then send notifications stating
that the payment did not go through, requesting that the
recipient follow the included link to correct the credit card
information and the billing address. The victims would be
taken to a site looking just like the site they recently did per­
form a purchase at, and may have to start by entering their
login information used with the real site. A wide variety
of such tricks can be used to increase the yield of phishing
attacks; all benefit from contextual information that can be
extracted from the victim’s browser.

There are several possible approaches that can be taken
to address the above problem at the root – namely, at the
information collection stage. First of all, users could be
instructed to clear their browser cache and browser history
frequently. However, many believe that any countermeasure
that is based on (repeated) actions taken by users is doomed
to fail. Moreover, the techniques used in [8, 4] will also de­
tect bookmarks on some browsers (such as Safari version
1.2). These are not affected by the clearing of the history
or the cache, and may be of equal or higher value to an
attacker in comparison to the contents of the cache and his­
tory of a given user. A second approach would be to once
and for all disable all caching and not keep any history data;
this approach, however, is highly wasteful in that it elimi­
nates the significant benefits associated with caching and
history files. A third avenue to protect users against inva­
sive browser sniffing is a client-side solution that limits (but
does not eliminate) the use of the cache. This would be done
based on a set of rules maintained by the user’s browser or
browser plug-in. Such an approach is taken in the concur­
rent work by Jackson et al. [1]. Finally, a fourth approach,
and the one we propose herein, is a server-side solution that
prevents cache contents from being verified by means of per­

sonalization. Our solution also allows such personalization
to be performed by network proxies, such as Akamai.

It should be clear that client-side and server-side solutions
not only address the problem from different angles, but also
that these different approaches address slightly different ver­
sions of the problem. Namely, a client-side solution protects
those users who have the appropriate protective software
installed on their machines, while a server-side solution pro­
tect all users of a given service (but only against intrusions
relating to their use of this service). The two are compli­
mentary, in particular in that the server-side approach al­
lows “blanket coverage” of large numbers of users that have
not yet obtained client-side protection, while the client-side
approach secures users in the face of potentially negligent
service providers. Moreover, if a caching proxy is employed
for a set of users within one organization, then this can be
abused to reveal information about the behavioral patterns
of users within the group even if these users were to employ
client-side measures within their individual browsers; abuse
of such information is stopped by a server-side solution, like
the one we describe.

From a technical point of view, it is of interest to note
that there are two very different ways in which one can hide
the contents of a cache. According to a first approach, one
makes it impossible to find references in the cache to a vis­
ited site, while according to a second approach, the cache
is intentionally polluted with references to all sites of some
class, thereby hiding the actual references to the visited sites
among these. Our solution uses a combination of these two
approaches: it makes it impossible to find references to all
internal URLs (as well as all bookmarked URLs), while caus­
ing pollution of entrance URLs. Here, we use these terms
to mean that an entrance URL corresponds to a URL a
person would typically type to start accessing a site, while
an internal URL is one that is accessed from an entrance
URL by logging in, searching, or following links. For ex­
ample, the URL http://test-run.com is an entrance URL
since visitors are most likely to load that URL by typing
it in or following a link from some other web site. The
URL http://test-run.com/logout.jsp, however, is inter­
nal. This URL is far more interesting to a phisher than the
entrance URL; knowing that a client C has been to this in­
ternal URL suggests that C logged out of the web site —
and thus must have logged in. Our solution will make it
infeasible for an attacker to guess the internal URLs while
also providing some obscurity for the entrance URLs.

Outline. We begin by reviewing the related work (section 2),
after which we specify our goals (section 3). We then detail
our solution and argue why it satisfies our security require­
ments (section 4). Finally, we report on practical details of
a test implementation (section 5).

Preliminary numbers support our claims that the solution
results in only a minimal overhead on the server side, and
an almost unnoticeable overhead on the client side. Here,
the former overhead is associated with computing one one-
way function per client and session, and with a repeated
mapping of URLs in all pages served. The latter overhead
stems from a small number of “unnecessary” cache misses
that may occur at the beginning of a new session. We pro­
vide evidence that our test implementation would scale well
to large systems without resulting in a bottleneck – whether
it is used as a server-side or proxy-side solution.

2. RELATED WORK

Browser caches. Caches are commonly used in various set­
tings, both on a given computer, and within an entire net­
work. One particular use of caches is for browsers, to avoid
the repeated downloading of material that has been recently
accessed. Browser caches typically reside on the individual
computers, but the closely related caching proxies are also
common; these reside on a local network to take advantage
not only of repeated individual requests for data, but also
of repeated requests within the group of users. The very
goal of caching data is to avoid having to repeatedly fetch
it; this results in significant speedups of activity – in the
case of browser caches and caching proxies, these speedups
result in higher apparent download speeds.

Felten and Schneider [2] described a timing-based attack
that made it possible to determine (with some statistically
quantifiable certainty) whether a given user had visited a
given site or not – simply by determining the retrieval times
of consecutive URL calls in a segment of HTTP code.

Browser history. In addition to having caches, common
browsers also maintain a history file; this allows browsers to
visually indicate previous browsing activity to their users,
and permits users to backtrack through a sequence of sites
he or she visited.

Securiteam [8] showed a history attack analogous to the
timing attack described by Felten and Schneider. The his­
tory attack uses Cascading Style Sheets (CSS) to infer whether
there is evidence of a given user having visited a given site or
not. This is done by utilizing the :visited pseudoclass to
determine whether a given site has been visited or not, and
later to communicate this information by invoking calls to
URLs associated with the different sites being detected; the
data corresponding to these URLs is hosted by a computer
controlled by the attacker, thereby allowing the attacker to
determine whether a given site was visited or not. We note
that it is not the domain that is detected, but whether the
user has been to a given page or not; this has to match the
queried site verbatim in order for a hit to occur. The same
attack was recently re-crafted by Jakobsson et al. to show
the impact of this vulnerability on phishing attacks; a demo
is maintained at [4]. This demo illustrates how simple the
attack is to perform and sniffs visitors’ history in order to
display one of the visitor’s recently visited U.S. banking web
sites.

Context-Aware Phishing. Browser-recon attacks can be
used as a component of context-aware phishing [5], also
known as spear phishing [6]. These are phishing attacks
where the attacker uses some knowledge learned about each
individual victim in order to fool more of his victims. (For a
more complete view of the context-aware phishing problem,
see [7].) For example, a visitor’s history could be sniffed
to determine which bank web site that specific visitor has
loaded. The phisher’s site in turn can be rendered with that
specific bank’s logo [4].

A client-side solution. In work concurrent with ours, Jack­
son et al. [1] have developed a client-side solution address­
ing the above-described problem. This works by making the
browser follow a set of rules of when to force cache and his­

tory misses – even if a hit could have been generated. This,
in turn, hides the contents of the browser cache and history
file to prying eyes. It does not, however, hide the contents
of local cache proxies – unless these are also equipped with
similar but in all likelihood more complex rule sets.

Our server-side solution. We approach such history at­
tacks from the opposite side from Jackson et al. [1], and
make URLs served by a service provider employing our so­
lution infeasible to guess. Though similar techniques (where
a unique random string is present in the URL) are employed
by many web sites, usually this is used to prevent session re­
play and can be hard to weave these URLs through a com­
plex web site. We provide a simple plug-in solution where
a service provider can simply install a new server, or new
software application on a server, and have a protected web
site without further site development.

Implementation issues. We make use of the robots ex­
clusion standard [9]. In this unofficial standard, parts of a
server’s file space is deemed as “off limits” to clients with
specific User-Agent values. For example, a client may present
a User-Agent value of:
“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)”
indicating that the browser in use is IE 6.0. Additionally,
the user-agent could be:
“Mozilla/5.0 (compatible; googlebot/2.1)”
indicating that Google’s web crawler is viewing the site.
Web servers can use the User-Agent value to hide portions of
their site from web crawlers. We use the these techniques in
a different manner. Namely, in conjunction with a whitelist
approach, we use the robot exclusion standard to give cer­
tain privileges to pre-approved robot processes – the iden­
tities and privileges of these are part of a security policy of
each individual site.

Our implementation may rely on either browser cookies
or an HTTP header called referer (sic). Cookies are small
amounts of data that a server can store on a client. These
bits of data are sent from the server to client in HTTP head­
ers – content that is not displayed. When a client requests
a document from a server S, it sends along with the request
any information stored in cookies by S. This transfer is au­
tomatic, and so using cookies has negligible overhead. The
HTTP-Referer header is an optional piece of information
sent to a server by a client’s browser. The value (if any)
indicates where the client obtained the address for the re­
quested document. In essence it is the location of the link
that the client clicked. If a client either types in a URL or
uses a bookmark, no value for HTTP-Referer is sent.

3. GOALS

Informal goal specification. Our goals are to make the
fullest possible use of both browser caches and browser his­
tories, without allowing third parties to determine the con­
tents of the cache/history. We refer to such actions as sniff­
ing. More in detail, our goals are:

1. A service provider	 SP should be able to prevent any
sniffing of any data related to any of their clients, for
data obtained from SP, or referenced in documents

served by SP. This should hold even if the distribu­
tion of data is performed using network proxies. Here,
we only consider sniffing of browsers of users not con­
trolled by the adversary, as establishing control over
a machine is a much more invasive attack, requiring a
stronger effort.

2. The above	 requirement should hold even if caching
proxies are used. Moreover, the requirement must hold
even if the adversary controls one or more user ma­
chines within a group of users sharing a caching proxy.

3. Search engines	 must retain the ability to find data
served by SP in the face of the augmentations per­
formed to avoid sniffing; the search engines should not
have to be aware of whether a given SP deploys our
proposed solution or not, nor should they have to be
augmented to continue to function as before.

Intuition. We achieve our goals using two techniques. First
and foremost, we use a customization technique for URLs,
in which each URL is “extended” using either a temporary
or long-term pseudonym (discussed in Section 4.1). This
prevents a third party from being able to interrogate the
browser cache/history of a user having received customized
data, given that all known techniques to do so require knowl­
edge of the exact file name being queried for. A second tech­
nique is what we refer to as cache pollution; this allows a site
to prevent meaningful information from being inferred from
a cache by having spurious data entered.

One particularly aggressive attack (depicted in Figure 1)
that we need to be concerned with is one in which the at­
tacker obtains a valid pseudonym from the server, and then
tricks a victim to use this pseudonym (e.g., by posing as
the service provider in question.) Thus, the attacker would
potentially know the pseudonym extension of URLs for his
victim, and would therefore also be able to query the browser
of the victim for what it has downloaded.

Hiding vs. obfuscating. As mentioned before, we will hide
references to internal URLs and bookmarked URLs, and ob­
fuscate references entrance URLs. The hiding of references
will be done using a method that customizes URLs using
pseudonyms that cannot be anticipated by a third party,
while the obfuscation is done by polluting: adding refer­
ences to all other entrance URLs in a given set of URLs.
This set is referred to as the anonymity set.

Formal goal specification. Let S be a server, or a proxy
acting on behalf of a server; here, S responds to requests
according to some policy πS . Further, let C be a client;
here, C is associated with one user account, and one browser.
The browser, in turn, is associated with a state σC , where
the state consists of different categories (such as cache and
history), and for each category of the state, a set of URLs
or other identifiers is stored. Furthermore, we let P be a
caching proxy associated with a set of clients C, C ∈ C, and
σP be the state of P ; we let that be organized1 into segments
1This organization is assumed simply for denotational sim­
plicity, and does not have to be performed in an actual im­
plementation.

Figure 1: An attack in which A obtains a valid
pseudonym p from the translator ST of a site S with
back-end SB , and coerces a client C to attempt to
use p for his next session. This is performed with the
goal of being able to query C’s history/cache files for
what pages within the corresponding domain that C
visited. Our solution disables such an attack.

σPi, each one of which corresponds to a client i ∈ C. These
segments, in turn, are each structured in the same manner
as σC is organized. When C retrieves data corresponding to
some URL x from a document served by S, then x is entered
in both σC and σPC (see Figure 2; contents of σC and σPC

are deleted according to some set of rules that are not of
importance herein. We let HIT C (x) be a predicate that is
true if and only if σC or σPC contains x. We say that S and x
are associated if documents served by S contain references to
x; we note that this allows x to be maintained by a server
other than S. Further, we say that an entrance S is n-
indicated by x if there are at least n independent domains
with entrances associated with x. (Thus, n corresponds to
the size of the anonymity set of S.)

We let A be an adversary controlling any member of C
but C, and interacting with both S and C some polynomial
number of times in the length of a security parameter k.
When interacting with S, A may post arbitrary requests x
and observe the responses; when interacting with C, it may
send any document X to C, forcing C to attempt to resolve
this by performing the associated queries. Here, X may
contain any polynomial number of URLs xj of A’s choice.
A first goal of A is to output a pair (S, x) such that HITC (x)
is true, and where x and S are associated. A second goal of
A is to output a pair (S, x) such that HITC (x) is true, and
where S is n-indicated by x.

We say that πS is perfectly privacy-preserving if A will
not attain the first goal but with a negligible probability in
the length of the security parameter k; the probability is
taken over the random coin tosses made by A, S, P and C.
Similarly, we say that πS is n privacy-preserving if A will
not attain the second goal but with a negligible probability.

Furthermore, we let E be a search engine; this is allowed
to interact with C some polynomial number of times in k.

Figure 2: Formalization of a server S, caching proxy
P , client C, attacker A, and attack message Φ (that
is sent either through the proxy or directly to C). A
controls many members of C, allowing it – in a worst
case scenario – to generate and coordinate the re­
quests from these members. This allows the attacker
to determine what components of the caching proxy
P are likely to be associated with C.

For each interaction, E may post an arbitrary request x and
observe the response. The strategy used by E is independent
of πS , i.e., E is oblivious of the policy used by S to respond
to requests. Thereafter, E receives a query q from C, and
has to output a response. We say that πS is searchable if and
only if E can generate a valid response x to the query, where
x is considered valid if and only if it can be successfully
resolved by S.

In the next section, we describe a solution that corre­
sponds to a policy πS that is searchable, and which is per­
fectly privacy-preserving with respect to internal URLs and
bookmarked URLs, and n-privacy-preserving with respect
to entrance URLs, for a value n corresponding to the maxi­
mum anonymity set of the service offered.

4. A SERVER-SIDE SOLUTION
At the heart of our solution is a filter associated with a

server whose resources and users are to be protected. Sim­
ilar to how middleware is used to filter calls between appli­
cation layer and lower-level layers, our proposed filter mod­
ifies communication between users/browsers and servers –
whether the servers are the actual originators of informa­
tion, or simply act on behalf of these, as is the case for
network proxies.

When interacting with a client (in the form of a web
browser), the filter customizes the names of all files (and
the corresponding links) in a manner that is unique for the
session, and which cannot be anticipated by a third party.
Thus, such a third party is unable to verify the contents of
the cache/history of a chosen victim; this can only be done
by somebody with knowledge of the name of the visited
pages.

4.1 Pseudonyms

Establishing a pseudonym. When a client first visits a site
protected by our translator, he accesses an entrance such
as the index page. The translator catches this request’s
absence of personalization, and thus generates a pseudonym
extension for the client.

Pseudonyms and temporary pseudonyms are selected from
a sufficiently large space, e.g., of 64-128 bits length. Tempo­
rary pseudonyms includes redundancy, allowing verification
of validity by parties who know the appropriate secret key;
pseudonyms do not need such redundancy, but can be veri­
fied to be valid using techniques to be detailed below.

Pseudonyms are generated pseudorandomly each time any
visitor starts browsing at a web site. Once a pseudonym has
been established, the requested page is sent to the client
using the translation methods described next.

Using a pseudonym. All the links, form URLs, and im­
age references on translated pages (those sent to the client
through the translator) are modified in two ways. First, any
occurrence of the server’s domain is changed to that of the
translator2 . This way requests will go to the translator, in­
stead of the server. Second, a querystring-style argument is
added to the URLs served by the translator (for the server).
This makes all the links on a page look different depending
on who and when the site is visited.

Pseudonym validity check. If an attacker A were able
to first obtain valid pseudonyms from a site S, and later
were able to convince a victim client C to use these same
pseudonyms with S, then this would allow A to successfully
determine what pages of S that C requested. To avoid such
an attack, we need to authenticate pseudonyms, which can
be done as follows:

1. Cookies:	 A cookie (which is accessible to only the
client and the protected server) can be established on
the client C when a pseudonym is first established for
C. The cookie value could include the value of the
pseudonym. Later, if the pseudonym used in a re­
quested URL is found to match the cookie of the cor­
responding client C, then the pseudonym is considered
valid. Traditional cookies as well as cache cookies (see,
e.g., [2, 8]) may be used for this purpose.

2. HTTP-Referer:	 The HTTP-Referer (sic) header in a
client’s request contains the location of a referring page:
in essence, this is the page on which a followed link was
housed. If the referrer is a URL on the site associated
with the server S, then the pseudonym is considered
valid.

3. Message Authentication Codes: Temporary pseudonyms
may be authenticated using message authentication
codes, where the key in question is shared by the refer­
ring site and the site S. Such pseudonyms may consist
of a counter and the MAC on the counter, and would
be found valid if and only if the MAC on the counter
is valid.

2The requested domain can be that which is normally as­
sociated with the service, while the translated domain is an
internal address. It would be transparent to users whether
the translator is part of the server or not.

A site may use more than one type of pseudonym authentica­
tion, e.g., to avoid replacing pseudonyms for users who have
disabled cookies or who do not provide appropriate HTTP­
referrers (but not both.) It is a policy matter to determine
what to do if a pseudonym or temporary pseudonym can­
not be established to be valid. One possible approach is to
refuse the connection, and another is to replace the invalid
pseudonym with a freshly generated pseudonym. (We note
that the unnecessary replacement of pseudonyms does not
constitute a security vulnerability, but merely subverts the
usefulness of the client’s cache.)

HTTP-Referer is an optional header field. Most modern
browsers provide it (IE, Mozilla, Firefox, Safari) but it will
not necessarily be present in case of a bookmark or manually
typed in link. This means that the referer will be within
server S’s domain if the link that was clicked appeared on
an one of the pages served by S. This lets us determine
whether we can skip the pseudonym generation phase. Thus,
one approach to determine the validity of a pseudonym may
be as follows:

•	 S looks for an HTTP referer header. If the referer is
from S’s domain, the associated pseudonym is consid­
ered valid.

•	 Otherwise, S checks for the proper pseudonym cookie.
If it’s there and the cookie’s value matches the pseudonym
given, then the associated pseudonym is considered
valid.

•	 Otherwise, disallow access with the given pseudonym
to prevent the related URL from entering C’s cache or
history.

Robot policies. The same policies do not necessarily ap­
ply to robots and to clients representing human users. In
particular, when interacting with a robot [9] (or agent), then
one may do not want to customize names of files and links,
or customize them using pseudonyms that will be replaced
when they are used.

Namely, one could – using a whitelist approach – allow
certain types of robot processes to obtain data that is not
pseudonymized; an example of a process with such permis­
sion would be a crawler for a search engine. As an alter­
native, any search engine may be served data that is cus­
tomized using temporary pseudonyms – these will be re­
placed with a fresh pseudonym each time they are accessed.
All other processes are served URLs with pseudo-randomly
chosen (and then static) pseudonym, where the exact choice
of pseudonym is not possible to anticipate for a third party.

More in particular, if there is a privacy agreement between
the server S and the search engine E, then S may allow E
to index its site in a non-customized state; upon generating
responses to queries, E would customize the corresponding
URLs using pseudo-randomly selected pseudonyms. These
can be selected in a manner that allows S to detect that
they were externally generated, allowing S to immediately
replace them with freshly generated pseudonyms. In the
absence of such arrangements, the indexed site may serve
the search engine URLs with temporary pseudonyms (gener­
ated and authenticated by itself) instead of non-customized
URLs or URLs with (non-temporary) pseudonyms. Note
that in this case we have that all users receiving a URL
with a temporary pseudonym from the search engine would

receive the same pseudonym. This corresponds to a degra­
dation of privacy in comparison to the situation in which
there is an arrangement between the search engine and the
indexed site, but an improvement compared to a situation
in which non-customized URLs are served by the search en­
gine. We note that in either case, we have that the search
engine does is unable to determine what internal pages on
an indexed site a referred user has visited.

The case in which a client-side robot is accessing data
corresponds to another interesting situation. Such a robot
will not alter the browser history of the client (assuming
it is not part of the browser), but will impact the client
cache. Thus, such robots should be not be excepted from
customization, and should be treated in the same way as
search engines without privacy arrangements, as described
above.

In the implementation section, we describe these (server-
side) policies in greater detail. We also note that these issues
are orthogonal to the issue of how robots are handled on a
given site, were our security enhancement not to be deployed.
In other words, at some sites, where robots are not permitted
whatsoever, the issue of when to perform personalization
(and when not to) becomes moot.

Pollution policy. A client C can arrive at a web site through
four means: typing in the URL, following a bookmark, fol­
lowing a link from a search engine, and by following a link
from an external site. A bookmark may contain a pseudonym
established by S, and so already the URL entered into the
C’s history (and cache) will be privacy-preserving. When a
server’s S obtains a request for an entrance URL not con­
taining a valid pseudonym, S must pollute the cache of C in
a way such that analysis of C’s state will not make it clear
which site was the intended target.

When C’s cache is polluted, the entries must be either
chosen at random or be a list sites that all provide the same
pollutants. Say when Alice accesses S, her cache is polluted
with sites X, Y , and Z. If these are the chosen pollutants
each time, the presence of these three sites in Alice’s cache
is enough to determine that she has visited S. However, if
all four sites S, X, Y , and Z pollute with the same list of
sites, no such determination can be made.

If S cannot guarantee that all of the sites in its pollutants
list will provide the same list, it must randomize which pollu­
tants it provides. Taken from a large list of valid sites, a ran­
dom set of pollutants essentially acts as a bulky pseudonym
that preserves the privacy of C – which of these randomly
provided sites was actually targeted cannot be determined
by an attacker.

4.2 Translation

Off-site references. The translator, in effect, begins act­
ing as a proxy for the actual web server – but the web pages
could contain references to off-site (external) images, such as
advertisements. An attacker could still learn that a victim
has been to a web site based on the external images or other
resources that it loads, or even the URLs that are referenced
by the web site. Because of this, the translator should also
act as an intermediary to forward external references as well
or forward the client to these sites through a standard redi­
rection URL; many web sites such as Google’s GMail employ
a technique like this to anonymize the referring page.

It is important to note that the translator should not ever
translate pages off-site pages; this could cause the translator
software to start acting as an open proxy. The external
URLs that it is allowed to serve should be a small number
to prevent this.

Redirection may not be necessary, depending on the trust
relationships between the external sites and the protected
server, although for optimal privacy either redirection should
be implemented or off-site images and URLs should be re­
moved from internal pages. Assuming that redirection is
implemented, the translator has to modify off-site URLs to
redirect through itself, except in cases in which two domains
collaborate and agree to pseudonyms set by the other, in
which case we may consider them the same domain, for the
purposes considered herein. This allows the opportunity to
put a pseudonym in URLs that point to off-site data. This is
also more work for the translator and could lead to serving
unnecessary pages. Because of this, it is up to the admin­
istrator of the translator (and probably the owner of the
server) to set a policy of what should be directed through
the translator ST . We refer to this as an off-site redirection
policy. It is worth noting that many sites with a potential
interest in our proposed measure (such as financial institu­
tions) may never access external pages unless these belong
to partners; such sites would therefore not require off-site
redirection policies.

Similarly, a policy must be set to determine what types
of files get translated by ST . The scanned types should be
set by an administrator and is called the data replacement
policy.

Example. A client Alice navigates to a requested domain
http://test-run.com (this site is what we previously de­
scribed as S) that is protected by a translator ST . In this
case, the translator is really what is located at that address,
and the server is hidden to the public at an internal address
(10.0.0.1 or SB) that only the translator can see. The ST

recognizes her User-Agent (provided in an HTTP header) as
not being a robot, and so proceeds to preserve her privacy.
A pseudonym is calculated for her (say, 38fa029f234fadc3)
and then the ST queries the actual server for the page. The
translator receives a page described in Figure 4.2.

The translator notices the pseudonym on the end of the
request, so it removes it, verifies that it is valid (e.g., using
cookies or HTTP Referer), and then forwards the request
to the server. When a response is given by the server, the
translator re-translates the page (using the steps mentioned
above) using the same pseudonym, which is obtained from
the request.

4.3 Translation Policies

Offsite redirection policy. Links to external sites are clas­
sified based on the sensitivity of the site. Which sites are
redirected through the translator ST should be carefully con­
sidered. Links to site a from the server’s site should be redi­
rected through ST only if an attacker can deduce something
about the relationship between C and S based on C visiting
site a. This leads to a classification of external sites into two
categories: safe and unsafe.

Distinguishing safe from unsafe sites can be difficult de­
pending on the content and structure of the server’s web site.
Redirecting all URLs that are referenced from the domain of

Go to google
Log in

The translator replaces any occurrences of the SB ’s address with its own.

Go to google
Log in

Then, based on ST ’s off-site redirection policy, it changes any off-site (external) URLs to redirect through itself:

 Go to google
Log in

Next, it updates all on-site references to use the pseudonym. This makes all the URLs unique:

 Go to google
Log in

All these steps are of course performed in one round of processing, and are only separated herein for reasons of legibility. If
Alice clicks the second link on the page (Log in) the following request is sent to the translator:

GET /login.jsp?38fa029f234fadc3

Figure 3: A sample translation of some URLs

S will ensure good privacy, but this places a larger burden
on the translator. Servers that do not reference offsite URLs
from “sensitive” portions of their site could minimize redi­
rections while those that do should rely on the translator to
privatize the clients’ URLs.

Data replacement policy. URLs are present in more than
just web pages: CSS style sheets, JavaScript files, and Java
applets are a few. Although each of these files has the po­
tential to affect a client’s browser history, not all of them ac­
tually will. For example, an interactive plug-in based media
file such as Macromedia Flash may incorporate links that
direct users to other sites; a JPEG image, however most
likely will not. These different types of data could be clas­
sified in the same manner: safe or unsafe. Then when the
translator forwards data to the client, it will only search for
and replace URLs in those files defined by the policy.

Since the types of data served by the back-end server SB

are controlled by its administrators (who are in charge of
ST as well), the data types that are translated can easily
be set. The people in charge of S’s content can ensure that
sensitive URLs are only placed in certain types of files (such
as HTML and CSS) – then the translator only has to process
those files.

Client robot distinction. We note that the case in which
a client-side robot (running on a client’s computer) is ac­
cessing data is a special case. Such a robot will not alter
the browser history of the client (assuming it is not part of
the browser), but will impact the client cache. Thus, such
robots should not be excepted from personalization. In the
implementation section, we describe this (server-side) policy
in greater detail.

4.4 Special Cases

Akamai. It could prove more difficult to implement a trans­
lator for web sites that use a distributed content de­
livery system such as Akamai. There are two methods
that could be used to adapt the translation technique:
First, the service provider could offer the service to all
customers – thus essentially building the option for the
translation into their system. Second, the translator
could be built into the web site being served. This
technique does not require that the translation be sep­
arate from the content distribution – in fact, some web
sites implement pseudonym-like behaviors in URLs for
their session tracking needs.

Shared/transfer pseudonyms. Following links without
added pseudonyms causes the translator to pollute the
cache. A better alternative may be that of shared
pseudonyms (between sites with a trust relationship)
or transfer pseudonyms (between collaborating sites
without a trust relationship.) Namely, administrators
of two translated web sites A and B could agree to pass
clients back and forth using pseudonyms. This would
remove the need for A to redirect links to B through
A’s translator, and likewise for B. If these pseudonyms
are adopted at the receiving site, we refer to them as
shared pseudonyms, while if they are replaced upon
arrival, we refer to them as transfer pseudonyms. We
note that the latter type of pseudonym would be cho­
sen for the sole purpose of inter-domain transfers –
the pseudonyms used within the referring site would
not be used for transfers, as this would expose these
pseudonym values to the site that is referred to.

Cache pollution reciprocity. A large group of site ad­
ministrators could agree to pollute, with the same set
of un-targeted URLs, caches of people who view their
respective sites without a pseudonym. This removes
the need to generate a random list of URLs to provide
as pollutants and could speed up the pollution method.
Additionally, such agreements could prevent possibly
unsolicited traffic to each of these group-members’ sites.

4.5 Security Argument
Herein, we argue why our proposed solution satisfies the

previously stated security requirements. This analysis is
rather straight-forward, and only involves a few cases.

Perfect privacy of internal pages. Our solution does not
expose pseudonyms associated with a given user/browser
to third parties, except in the situation where temporary
pseudonyms are used (this only exposes the fact that the
user visited that very page) and where shared pseudonyms
are used (in which case the referring site is trusted.) Fur­
ther, a site replaces any pseudonyms not generated by itself
or trusted collaborators. Thus, assuming no intentional dis­
closure of URLs by the user, and given the pseudo-random
selection of pseudonyms, we have that the pseudonyms as­
sociated with a given user/browser can not be inferred by a
third party. Similarly, it is not possible for a third party to
cause a victim to use a pseudonym given to the server by
the attacker, as this would cause the pseudonym to become
invalid (which will be detected.) It follows that the solution
offers perfect privacy of internal pages.

n-privacy of entrance pages. Assuming pollution of n en­
trance points from a set X by any member of a set of do­
mains corresponding to X , we have that access of one of
these entrance points cannot be distinguished from the ac­
cess of another – from cache/history data alone – by a third
party.

Searchability. We note that any search engine that is ex­
cepted from the customization of indexed pages (by means
of techniques used in the robots exclusion standard) will be
oblivious of the translation that is otherwise imposed on ac­
cesses, unless in agreement to apply temporary pseudonyms.
Similarly, a search engine that is served already customized
data will be able to remain oblivious of this, given that
users will be given the same URLs, which will then be re-
customized.

It is worth noting that while clients can easily manipulate
the pseudonyms, there is no benefit associated with doing
this, and what is more, it may have detrimental effects on
the security of the client. Thus, we do not need to worry
about such modifications since they are irrational.

5. IMPLEMENTATION DETAILS
We implemented a rough prototype translator to estimate

ease of use as well as determine approximate efficiency and
accuracy. Our translator was written as a Java applica­
tion that sat between a client C and protected site S. The
translator performed user-agent detection (for identifying
robots); pseudonym generation and assignment; translation
(as described in Section 4.2); and redirection of external (off­
site) URLs. We placed the translator on a separate machine

from S in order to get an idea of the worst-case timing and
interaction requirements, although they were on the same
local network. The remote client was set up on the Internet
outside that local network.

In an ideal situation, a web site could be augmented with a
translator easily: the software serving the site is changed to
serve data on the computer’s loopback interface (127.0.0.1)
instead of through the external network interface. Second,
the translator is installed and listens on the external net­
work interface and forwards to the server on the loopback
interface. It seems to the outside world that nothing has
changed: the translator now listens closest to the clients at
the same address where the server listened before. Addi­
tionally, extensions to a web server may make implementing
a translator very easy.3

5.1 Pseudonyms and Translation
Pseudonyms were calculated in our prototype that use

the java.security.SecureRandom pseudo-random-number
generator to create a 64-bit random string in hexadecimal.
Pseudonyms could easily be generated to any length using
this method, but 64-bit was deemed adequate for our test.

A client sent requests to our prototype and the URL was
scanned for an instance of the pseudonym. If the pseudonym
was not present, it was generated for the client as described
and then stored only until the response from the server was
translated and sent back to the client.

Most of the parsing was done in the header of the HTTP
requests and responses. We implemented a simple data
replacement policy for our prototype: any value for User-
Agent that was not “robot” or “wget” was assumed to be
a human client. This allowed us to easily write a script us­
ing the command-line wget tool in order to pretend to be a
robot. Any content would simply be served in basic proxy
mode if the User-Agent was identified as one of these two.

Additionally, if the content type was not text/html, then
the associated data in the data stream was simply forwarded
back and forth between client and server in a basic proxy
fashion. HTML data was intercepted and parsed to replace
URLs in common context locations:

• Links (...)

• Media (<�tag� src=’�URL�’>)

• Forms (<form action=’�URL�’>)

More contexts could easily be added, as the prototype used
Java regular expressions for search and replace.4 The pro­
cess of finding and replacing URLs is not very interesting be­
cause the owner of the translator most likely owns the server
too and can customize the server’s content to be “translator­
friendly” – easily parsed by a translator.

3The Apache web server can be extended with mod rewrite
to rewrite requested URLs on the fly — with very little
overhead. Using this in combination with another custom
module (that would translate web pages) could provide a
full-featured translator “proxy” without requiring a second
server or web service program.
4Our prototype did not contain any optimizations because
it was a simple proof-of-concept model and we wanted to
calculate worst-case timings.

Redirection policy. The prototype also implemented a very
conservative redirection policy: for all pages p served by the
web site hosted by the back-end server SB , any external
URLs on p were replaced with a redirection for p through
ST . Any pages q not served by SB were not translated at
all and simply forwarded; the URLs on q were left alone.

Timing. The prototype translator did not provide signifi­
cant overhead when translating documents. Since only HTML
documents were translated, the bulk of the content (images)
were simply forwarded. Because of this, we did not include
in our results the time taken to transfer any file other than
HTML. Essentially our test web site served only HTML
pages and no other content. Because of this, all content
passing through the translator had to be translated. This
situation represents the absolute worst case scenario for the
translator. As a result, our data may be a conservative rep­
resentation of the speed of a translator.

Set up Avg. StdDev. Min Max
No Translator 0.1882s 0.0478s 0.1171s 1.243s
Basic Proxy 0.2529s 0.0971s 0.1609s 1.991s
Full Translation 0.2669s 0.0885s 0.1833s 1.975s

Table 1: Seconds delay in prototype translator

We measured the amount of time it took to completely
send the client’s request and receive the entire response.
This was measured for eight differently sized HTML doc­
uments 1000 times each. We set up the client to only load
single HTML pages as a conservative estimate – in reality
fewer pages will be translated since many requests for im­
ages will be sent through the translator. Because of this we
can conclude that the actual impact of the translator on a
robust web-site will be less significant than our findings.

Figure 4: Confidence intervals for three tests —
based on our sample, the mean of any future tests
will appear within the confidence intervals (boxes)
shown above with a 95% probability. The lines show
the range of our data (truncated at the top to em­
phasize the confidence intervals).

Figure 5: Cumulative distribution of our data. The
vast majority of the results from each of the three
test cases appears in a very short range of times,
indicating cohesive results. Additionally, the delay
for translation is only about 90ms more than for
standard web traffic (with no translator).

Our data (Figures 4 and 5) shows that the translation of
pages does not create noticeable overhead on top of what
it takes for the translator to act as a basic proxy. More­
over, acting as a basic proxy creates so little overhead that
delays in transmission via the Internet completely shadow
any performance hit caused by our translator (Table 1)5 .
We conclude that the use of a translator in the fashion we
describe will not cause a major performance hit on a web
site.

5.2 General Considerations

Forwarding user-agent. It is necessary that the User-Agent
attribute of HTTP requests be forwarded from the transla­
tor to the server. This way the server is aware what type
of end client is asking for content. Some of the server’s
pages may rely on this: perhaps serving different content
to different browsers or platforms. If the User-Agent were
not forwarded, the server would always see the agent of the
translator and would not be able to tell anything about the
end clients – so it is forwarded to maintain maximum flexi­
bility.

Cookies to be translated. When a client sends cookies,
it only sends the cookies to the server that set them. This
means if the requested domain is not the same as the hidden
domain (that is, the translator is running on a machine other
than the protected server) then the translator will have to
alter the domain of the cookies as they travel back and forth
between the client and server (Figure 6). This is clearly un­
necessary if the translator is simply another process running
in the same domain as the privacy-preserving server – the
domain does not have to change.
5A small quantity of outliers with much longer delays (more
than four seconds) was removed from our data since it was
most likely due to temporary delays in the Internet infras­
tructure.

Figure 6: The translation of cookies when trans­
ferred between C and SB through a translator ST .

Cookies that are set or retrieved by external sites (not the
translated server) will not be translated by the translator.
This is because the translator in effect only represents its
server and not any external sites.

Translation optimization. Since the administrator of the
server is most likely in control of the translator too, she has
the opportunity to speed up the translation of static con­
tent. When a static HTML page is served, the pseudonym
will always be placed in the same locations no matter what
the value of the pseudonym. This means that the locations
where pseudonyms should be inserted can be stored along
side of the content – then the translator can easily plop in
pseudonyms without having to search through and parse the
data files.

Acknowledgments
Many thanks to Tom Jagatic for stimulating discussions and
Mike McLeish for assistance with timing measurements.

6. REFERENCES
[1] C. Jackson, A. Bortz, D. Boneh, J. C. Mitchell,

“Web Privacy Attacks on a Unified Same-Origin

Browser,” in submission.

[2] E. W. Felten and M. A. Schneider, “Timing Attacks
on Web Privacy,” In Jajodia, S. and Samarati, P.,
editors, 7th ACM Conference in Computer and
Communication Security 2000, pp. 25–32.

[3] T. Jagatic, N. Johnson, M. Jakobsson, F. Menczer:
Social Phishing. 2006

[4] M. Jakobsson, T. Jagatic, S. Stamm, “Phishing for
Clues,” www.browser-recon.info

[5] M. Jakobsson “Modeling and Preventing Phishing
Attacks.” Phishing Panel in Financial Cryptography
’05. 2005.

[6] B. Grow, “Spear-Phishers are Sneaking in.”

BusinessWeek, July 11 2005. No. 3942, P. 13

[7] M. Jakobsson and S. Myers, “Phishing and
Counter-Measures: Understanding the Increasing
Problem of Electronic Identity Theft.”
Wiley-Interscience (July 7, 2006), ISBN
0-4717-8245-9.

[8]	 www.securiteam.com/securityreviews/

5GP020A6LG.html

[9] www.robotstxt.org/

