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Motivating Example

- Firms need to make pricing and advertising decisions.
1/10

- Firms use ML/Al algorithms to price and bid.



Motivating Example

; SELLER SNAP Features Pricing  Roscuecos About U

The most advanced Al Amazon repricer
and business intelligence software on

the market.

Save time.|Avoid price wars| Maximize profits.

Login

1/10



Background



( oo | FEDERAL TRADE COMMISSION
X ST AMBICHS COMVURMIES

leme | Buwness Guigenes | Usnass Slog

Business Biog
Price fixing by algorithm is still price fixing

By: Harvah Garmen-Monbert and en Mebers — Mach 12024 @ O O

Lundioros and progerty mansgers can't pricing. Using new toda it
dowsn't changa that antitrust fundamental. Regardiass of the industry you'e in, i your business uses
ah algarithm to determing prices,  brief fied by the FTC and the Department of Justics offers a
neipful guidesng for antlirust complance: your algarithm can’t go anything that woukd be Segal I
done by & real parson.

Tisday, the FTG and Department of Justice took action to fight algorithmic collusion in the msidential
hausing markat. The agencies filed a ft legal bried B explaining that price fixing through an
algorithm is still price fikng. The brief highlig! of law important for
Businesses in every ndustry: (1) you can't use an algorithm to evade the law Banning price-fixing
and (2} pricing fsts, ar

Entorcement - Palicy Arvice and G



2/10



Background



Justice Department Sues RealPage for
Algorithmic Pricing Scheme that Harms
Millions of American Renters

Freamy, Aumin 22 des ‘ Far immediate Reloase

- | Officant Fubiic Attairs

RealPage's Pricing Algorithm Violates Antitrust Laws

The Justice Departrient, together with the Attormoys Geners] of North Corolina, Cabarm,
Colorado, Connecticut, Minnasota, Oregon, Tennessae, ond Washington, flled a civl antitriat
Lawsi today agalret FaniPage Ine. for its uniowiul schema fo decreass compatition amoni
rtmant pricing and foe

softwoce that 16 price ago's slleged conduct
clnrives enters ol this bunefits of comgetitien on aparimInt Masing terims and hanms millons
of Amancans. The lawsut was Ted today in the WS, District Court for the Middle District of
HNortth Caroline snd slleges thot RealPage violated Soctions | and 2 of the Shorman Act.

The complwnt Alhm !M FealPag CONracts With compating landiords wha agroe to share
with RisaiPa oficut thelr spartment rantal rates
el athar lsase tarms 1o train and run Feal Page’s alynthmic prcing sofiwane This saftwars
then Inclidiog mment runtal pricing snd ather terme. for
hwir arat 1hwir rivats” The
camplaint further alieges that in @ free murket. {fese londonds would otherwise be competing
ot based discounts, ions, |sast Verms, ard
other dimansions of apartment ieasing. RedlPage also uses this schame and its substontisl dato

R b Bt i S A




2/10



ResearchQuestions:

1. Howdoreinforcementlearning(RL)algorithmsinfluence
competitionbids,prices,andprofits?

2. Whencanalgorithmicpricingbebeneficialforconsumers?|s
thereanysupportingempiricalevidence?



Overview

Part 1: Contributions and Intuition

Part 2: Conditions for Beneficial Algorithmic Pricing

Theoretical Model Setup

Reinforcement Learning Simulation of Pricing and Bidding

Part 3: Empirical Analysis: Beneficial Algorithmic Pricing on Amazon.com
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- Conclusion and Managerial Implications

Contributions
- Recent research:

- Calvano et al., 2020; Hansen et al., 2021; Johnson et al., 2023; Wang et al., 2023 -
Competing algorithms learn to tacitly collude on higher prices.
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T Collusive price

® Firm1
@ Firm2

Price

Competitive price

Learning phase

Calvano et al. (2020) Protecting consumers from collusive prices due to Al. Science
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Contributions

Algorithms still collude when pricing and bidding.

However, algorithmic prices can be lower when consumers consider fewer
products.

Empirically estimate using Amazon data:

Negative interaction of consumer consideration size and algorithms on prices.
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- In 52% of Electronics keyword markets, algorithms can generate lower prices.
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ModelSetup
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Digital Platform Setting -
- Platform displays productsin
- sponsored positions
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Digital Platform Setting

sponsored positions
and organic positions

Sellers price and bid

similar products within the same
keyword

different ASINs
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Digital Platform Setting

- Heterogeneous consumers

consider different numbers of
products

Platform displays productsin
sponsored positions
and organic positions

Sellers price and bid
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Digital Platform Setting

and organic positions
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similar products within the
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Digital Platform Setting

- similar products within the
same keyword
- different ASINs

- Heterogeneous consumers
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AlgorithmicPricingandBidding

Reinforcementlearning(RL)algorithmslearnto maximizeprofits via
dynamic exploration/exploitation of pricesandadvertisingbids .
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Algorithmic Decision-Making vs Competition Benchmark
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Will the Results Generalize to Different Algorithms? YES!
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Will the Results Generalize to Different Algorithms? YES!
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EmpiricalAnalyses:

ConsumerConsiderationSize . AlgorithmUsage



Algorithms and Consideration Size Interaction
- Negative interaction of consideration size and algorithm usage on pricing.
- Algorithm index is imputed from pricing correlation (Chen et al., 2016).
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Summary

- Algorithmic pricing can benefit consumers when the consideration set is small.

- The results of beneficial algorithmic pricing can generalize to different
algorithms with an exploration feature.



- We find empirical evidence for these benefits on Amazon.com.

- We consider the platform’s strategic response and find that algorithms can
create a win-win-win scenario for consumers, sellers, and the platform itself.
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Stylized Model of Two Ex-ante Symmetric Sellers
- In period t, seller i sets price p;* and bid b/, and gets profit:
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RL Can Benefit Consumers
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RL Benefits Sellers
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Would RL Always Lead to Lower Prices? YES!



Price
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Mechanism: Bid Coordination

- RL can coordinate on lower bids, reducing costs and lowering prices.
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Mechanism: Bid Coordination

- RL can coordinate on lower bids, reducing costs and lowering prices.
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Algorithms Learn to Price and Bid

Y

Quisa) = (1-a)Q(s,a)+ allwisas € 6
maxQ:(s,a™ )
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State-Action Learning |

Value Rate l

Function

- With a probability of 1 - €, the algorithms exploit.

Discount |

FactorJ



- With a probability of €= e-%, the algorithms explore, where 6 > 0 is the

experimentation parameter

>

Micro Foundation of &

- At each position, consumers compare



- the expected incremental utility of continuing their search to the next position, -
and the cost s.

- Consumers search the first position but not the second
log(1+61) -0>s>log(1+61+E[672161]) - log (1 +61)

- Consumers search the second



log (1 + 61+ E[672161])-log (1+61) >s
Micro Foundation of &

-Then$ and 1 - 9 can be expressed as

Fs(log (1 + E[671])) = Fs(log (1 + 61+ E[672161]) —log (1L + 61)) O =




Fs(log (1+E[671]))

Fs(log (1 + 61+ E[672161]) —log (1 +61))
1-9=

Fs(log (1+E[671]))



Model Details

- ldentification:
- Unobserved quality follows AR(1), &t - njt+ p &1

- Contemporaneous shock of the unobserved quality is uncorrelated with
previous period organic rank rje;



Nt - Gjt—1
( jt - Fjt-—1 =0



By Category Price
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By Category Algorithm Usage Index
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Compute RL Crossing Condition

- For every keyword k, estimate consumer consideration size p“«.



Prica

- Use demand estimates from keyword k and
the RL simulation to find the crossing AR S i
condition p«. 2 T

- If p*«> pk, then algorithms can be A
beneficial in keyword market k.



Compare Estimates With RL Crossing Condition
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- Algorithms can lead to beneficial outcomes in 52% of Electronics markets.

- Regulation can be useful in markets with consumers considering more
products. "o summary



Compare Estimates With RL Crossing Condition
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- Algorithms can lead to beneficial outcomes in 52% of Electronics markets.

- Regulation can be useful in markets with consumers considering more

>

products. "o summary



Platform'’s Strategic Response

- The platform has two revenue channels:

‘ Commission ’ amazon | Advertising




Platform'’s Strategic Response

- We consider two incentive-based instruments for the platform:



Platform'’s Strategic Response

‘ Commission | amazon | Advertising |

’ Commission rate | ’Auction Reserve price|

CommissionRate * ReservePrice > back



Platform'’s Strategic Response

- The platform should adjust commission rate, not adjust auction reserve price.



Platform'’s Strategic Response

‘ Commission | amazon | Advertising |

’ Commission rate | ’Auction Reserve price|

CommissionRate * ReservePrice > back



Reserve Price

- Adjusting auction reserve price leads algorithms to coordinate on lower bids.



Bids
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Commission Rate

- Adjusting commission rate recoups ad revenue from commissions.



Platform's Profit
0.35

— Competition Benchmark
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Total Surplus

- When consumer search costs are high, algorithms increase total welfare.
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