Driving the Drivers Algorithmic Wage-Setting in Ride-Hailing Yanyou Chen, Yao Luo, Zhe Yuan

Discussion by Nick Buchholz, Princeton University

FTC November 2024

Unique platform sources of market power:

Data Collection

• Cost discovery via repeated observation (data also proprietary)

Temporal Price Discrimination

- Workers value flexibility, may conflict with platform objectives
- "Extract" this value by only subsidizing less preferred hours

Network effects and Lock-in

- Non-linear incentives (e.g. Uber, Lyft) induce switching costs
- Reputation scores, gamification, learning-curves

This paper: what happens when platform offers better assignments for workers who serve market during certain (high cost) hours?

Model

Model elements

- Consumers: CES demand $D(p_t)$
- Platform: Chooses assignment rule *s_t*: share of orders assigned to type *τ* and common ride price *p_t* to clear markets.
- Drivers: Choose schedule: type *τ* and hours *j*.

$$W_t = \sum_{t,n} \underbrace{Q(\text{riders arriving in } t)}_{D(p_t)} \cdot \underbrace{Pr(\text{assigned to rider})}_{s/N} \cdot \underbrace{payment}_{p_t \cdot (1-r)}$$

Effect of cross-hours driver incentives

- Drivers hurt by menu option: -0.5% welfare (vs. no type discrimination)
- Platforms: more control over labor mkt.: can \downarrow p, \uparrow profit 1.42%.
- Driver schedules less flexible (i.e. incentive works)

Comment: assignment vs. wage setting?

In model, driver reimbursements are isomorphic to assignment rule

Current spec ... $wage_t^{\tau} = (1 - r) \cdot s_t \cdot revenue_t \rightarrow r$ fixed, s_t variable equivalent to ... $wage_t^{\tau} = (1 - r_t^{\tau}) \cdot s \cdot revenue_t \rightarrow r$ variable, s fixed

Then why would platform choose assignments? Some possibilities:

- ① Opaque: keeps information private by limiting price signals
- 2 They may induce stronger inter-temporal commitment
 - Limit idle time in which quit decision might be made
 - E.g., assign "long trips" during periods of high opportunity cost)
- S Control match quality (e.g match H-drivers w/ 5* riders)
 - Benefits high value drivers and consumers

Market with "Match Quality"

- Quality: lower ETA, ratings, driver destinations, etc.
 - p_t, z_t product price, quality
 - *r*_t, *s*_t driver reimbursement, matching rule
- Demand: $D(p_t, z_t)$, Supply: $S(r_t, s_t)$
- What are the equilibria?
 - Under some parameterizations: (infinitely?) many ways to clear markets
 - Question is, how the platform selects among these equilibria
 - Should relate to relative elasticities w.r.t. *p*_t, *z*_t, and cost of providing quality.