Tirza Angerhofer $^1$   $\,$  Allan Collard-Wexler  $^1$   $\,$  Matthew Weinberg  $^2$  11/14/2024  $\,$ 

<sup>1</sup>Duke University

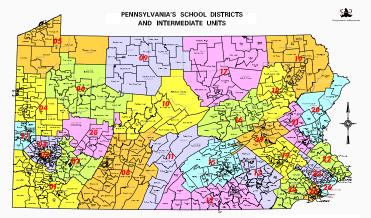
<sup>2</sup>Ohio State University

# Research Question: Study presence and consequences of oligopsony power and collective bargaining for K-12 Teachers in Pennsylvania

# Why is this interesting?

- Teachers have specialized skills, but are almost entirely employed by locally monopolistic school-boards: oligopsony power.
- Galbraith (1954) talks about the "countervailing" power of labor unions in the presence of monopsonistic employer.
- Unions are prevalent across the world (40 percent of Quebec's labor force), as is collective wage setting across sectors (Germany), and in the public sector (33 percent in US).

### What we do


- Use detailed microdata on all teachers and schools in Pennsylvania.
- Nash-in-Nash Bargaining model with externalities applied to the labor market.
- Use estimated model to simulate:
  - 1. Efficiency of Unions.
  - 2. Equilibrium labor market outcomes without teacher unions.
  - 3. Outcomes where union negotiates one schedule for entire state Sectoral Bargaining.

Preliminary Evidence

Structural Model

Estimation

- 499 School Districts and 245 Charter Schools in Pennsylvania over 90% teachers in School Districts.
- School Districts and Teachers Unions negotiate a collective agreement. Few unions in charter schools.
- Salaries are schedules based on experience and degree alone.
- Salaries vary tremendously between districts: Lower Merion (\$100,000) versus North Star (\$48,000). This is also true locally (Philly SD \$69,000 next to Lower Merion).



#### PENNSYLVANIA'S INTERMEDIATE UNITS

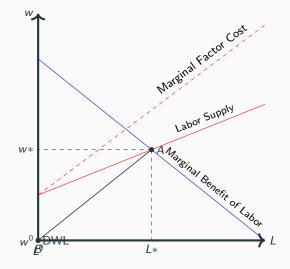
#### Key - IU Name

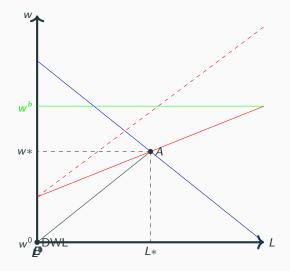
- 01 Intermediate Unit 1
- 02 Pittsburgh Mt. Oliver IU 2
- 03 Allegheny IU 3
- 04 Midwestern IU 4
- 05 Northwest Trl County IU 5
- 06 Riverview IU 6
- 07 Westmoreland IU 7
- 08 Appalachia IU 8

Key – U Name

- 09 Seneca Highlands IU 9
- 10 Central IU 10
- 11 Tuscarora IU 11
- 12 Lincoln |U 12
- 13 Lancaster Lebanon IU 13
- 14 Berks County IU 14
- 15 Capital Area IU 15
- 16 Central Susquehanna IU 16

#### Key – IU Name


- 17 Blast IU 17
- 18 Luzerne IU 18
- 19 Northeastern Educational IU 19
- 20 Colonial U 20
- 21 Carbon Lehigh IU 21
- 22 Bucks County IU 22
- 23 Montgomery County IU 23
- 24 Chester County IU 24


- Key U Name
- 25 Delaware County IU 25
- 26 Philadelphia IU 26
- 27 Beaver Valley U 27
- 28 ARIN IU 28
- 29 Schuylkill IU 29
- County Boundary Line



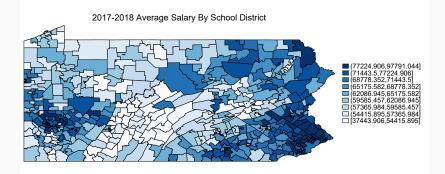
land to star days.

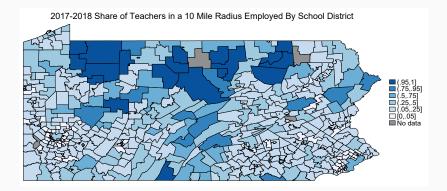
# **Monoposony Distortion**

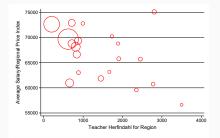




- 1. Nash-in-Nash Bargaining between Schools and Local Teachers Unions on wage (Wage Setting).
- 2. School Districts make offers to teachers conditional on negotiated wages. This combine the Medoff Model and allowing for wages to be too high to clear the market (**Hiring**).
- 3. Teachers decided whom to work for (Labor Supply).

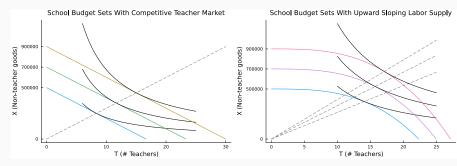

## Preliminary Evidence


Structural Model

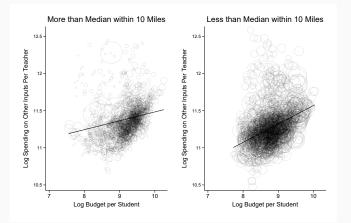

Estimation

- 1. Institutional Features.
- 2. Oligopsony distortion.
- 3. Charter versus Public School Districts
- 4. Bargaining and Wage Dispersion.

- 1. Teachers are about 1% of the labor force.
- 2. Teacher training is required for a specific task.
- 3. Government Dominant Employer.
- 4. Uniform wage schedule based on years of experience and masters degree: no wage discrimination issues. We know what a teacher would make in any job.






|                                | Salary Over Cost of Living Index |         |         |  |  |  |
|--------------------------------|----------------------------------|---------|---------|--|--|--|
|                                | (1)                              | (2)     | (3)     |  |  |  |
| log(Districts Within 10 Miles) | 0.06                             | 0.05    |         |  |  |  |
|                                | (0.01)                           | (0.01)  |         |  |  |  |
| $\leq$ 5 Districts             |                                  |         | -0.09   |  |  |  |
| within 10 Miles                |                                  |         | (0.02)  |  |  |  |
| > 5 and $< 15$                 |                                  |         | -0.05   |  |  |  |
| within 10 Miles                |                                  |         | (0.02)  |  |  |  |
| Observations                   | 1087387                          | 1087387 | 1087387 |  |  |  |
| $R^2$                          | 0.52                             | 0.54    | 0.59    |  |  |  |

• School District Choosing Teachers *T* and non-teacher input *X* — which is a competitive input.



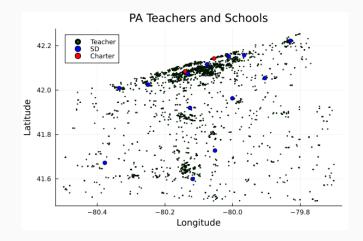
• Engel Curve will be steeper in concentrated markets than competitive markets.



- Charter School teachers rarely unionized.
- 2017-2018 AY Average Annual Salary of Public School Teachers was \$68,631 vs \$50,601 in Charter Schools.
- Compensating differentials have difficulty explaining this: quit rates for charter schools are higher conditional on salary.

- Similar teachers get very different wages in neighboring school districts.
- No evidence of teacher wages differing on unobservables: when a teacher moves across the state, their arrival school salary rank is not significantly correlated with their departure school rank.

Preliminary Evidence


### Structural Model

Estimation

Three different components:

- 1. Labor Supply.
- 2. Labor Demand: School District Hiring.
- 3. Wage Formation: Nash Bargaining.

Erie PA



• Teachers  $i = 1, \dots, N$  receive utility from working in school district  $j = 1, \dots, J$  is given by:

$$u_{ij} = \psi w_j - \tau \underbrace{d_{ij}}_{\text{commuting distance}} + x_j \beta_i + \epsilon_{ij}, \tag{1}$$

 $\epsilon_{ij}$  is a standard logit shock. Each teacher has a reservation utility for working r.

 Teachers choose among their offers (o<sub>ij</sub> ∈ 0, 1)/not working that yields the highest u<sub>ij</sub>.

$$s_{ij} = \frac{\exp(\delta_{ij})o_{ij}}{\exp(r) + \sum_{k} \exp(\delta_{ik})o_{ik}}$$
(2)

- Nested Logit for the outside option of not teaching with nesting parameter  $\sigma$ .
- Moving to a mixed logit u<sub>ij</sub> = δ<sub>ij</sub> + σν<sub>i</sub> + ε<sub>it</sub>, where ν<sub>i</sub> is a shock to the value of being inside the teaching profession.

Schools have an educational production function over teachers  $T_j$  and other inputs  $X_j$  given by:

$$W(X_j, T_j) = T_j^{\gamma} X_j^{1-\gamma} = T_j^{\gamma} (B_j - w_j T_j)^{1-\gamma}$$
(3)

Want to equalize revenue share:

$$\frac{\gamma}{1-\gamma} = \frac{w_j T_j}{B_j - w_j T_j} \tag{4}$$

- Send out offers  $o_{ij}$  to teachers to hit this target, but notice that you might run of out teachers to hire for a given wage  $w_j$ .
- Notice that offers  $o_{ij}(\mathcal{O}_{-j})$  depend on offers of other school districts.
- Moving to a CES Production Function: non-unit elasticity of labor demand.

Negotiation over wages between leeds to firms maximizing the Nash Product:

$$\mathcal{N}(w_j|w_{-j}) = [W(T^*(w_j, w_{-j}), B_j - w_j T^*(w_j, w_{-j}))]^{\alpha_b} [w_j T_j(w_j, w_{-j})]^{1-\alpha_b}$$
(5)

- Schools care about educational production.
- Unions care about total membership revenue.
- We have also run the model with the union objective function:  $w_j r$ .
- Notice that this is conditioned on the wages set by other school districts: Nash-in-Nash.

Preliminary Evidence

Structural Model

# Estimation

Three different sets of parameters to estimate:

- 1. Labor Supply Parameters  $(\beta, \tau, \psi, \sigma)$ .
- 2. School District Production Function Parameters ( $\gamma$ ): Labor Demand.
- 3. Nash Bargaining weights  $\alpha_b$  by school district: wages.

- Offers  $o_{ij} \in \{0,1\}$  are unknown, yielding an unobserved choice set problem.
- We use the IIA insights in McFadden (1984) that require only to have two choices that are known to be in the choice set: current job versus the outside option (quit decision).
- This works for inside option nest: for outside option we need to estimate the nesting parameter  $\sigma$  and reservation value r by indirect inference.

# Labor Supply Estimates

| Dependent var: Quit      | (1)                   | (2)                   |
|--------------------------|-----------------------|-----------------------|
| Real Salary (thousands)  | -0.00373<br>(0.00103) | -0.00377<br>(0.00103) |
| Commute Time (minutes)   | 0.00019<br>(0.00005)  |                       |
| Commute Time in IQ Range |                       | 0.00560<br>(0.00186)  |
| Commute Time above 75th  |                       | 0.00787<br>(0.00211)  |
| Fraction on Free Lunch   | 0.01270<br>(0.00587)  | 0.01265<br>(0.00591)  |
| Charter                  | 0.02269<br>(0.00248)  | 0.02286<br>(0.00245)  |
| Observations             | 59480                 | 59480                 |

- MRS between commuting and salary: \$ 76 a hour assuming a 200 day schoolyear.
- Schools with Poor Kids and Charter Schools are disliked.
- Own wage elasticity between 4 and 5.

Parameters pinned down by indirect inference about the outside option:

- Nesting  $\sigma$  0.8.
- Reservation wage.

1

3

4

8

9

10

14 -0.107-0.18-0.037

15 -0.074-0.117-0.04 -0.929-0.783-0.488

-0.429-1.293-0.014-0.593-0.689-0.572-0.165-0.46-0.041-0.456

-0.097 -0.229-0.035-0.845-0.833-0.513-0.199

-0.0-0.001-0.0-0.001-0.001-0.001-0.0

-1.028

-0.773-0.523-0.243-1.197-0.11-1.068-0.191-0.29-0.1524.167 -0.002-0.0

5 6 7 12 1 3 4 9 10 14 15 -1.0085.552 -1.45-0.551-0.275-0.399-0.135-0.185 -0.017-0.284 -0.025 -1.277-0.6094.414 -0.007-0.447-0.554-0.501-0.058-0.0-0.0-0.083-0.145.005 -0.952-0.785-0.499-0.222-1.353-0.123-1.052-0.221-0.268-0.166-0.001-0.002 -0.162-0.278-0.0314.641 -0.746-0.566-0.286-0.994-0.092-0.965-0.157-0.364-0.133-0.001-0.002-0.167-0.401-0.03-0.8695.562 -0.575-0.212-1.052-0.094-0.853-0.18-0.492-0.152-0.001-0.002-0.227-0.501-0.026-0.912-0.7965.188 -0.234-0.873-0.079-0.799-0.142-0.565-0.13-0.001-0.001-0.204-0.334-0.029-1.135-0.724-0.5785.462 -0.916-0.084-0.905-0.144-0.401-0.124-0.001-0.001-0.062-0.1-0.039-0.865-0.787-0.471-0.2014.834 -0.135 -0.976-0.289-0.246-0.183-0.001-0.002-0.248 -0.066-0.105-0.039-0.892-0.784-0.477-0.207-1.5075.375 -1.004-0.263-0.178-0.001-0.002-0.11-0.187-0.037-1.023-0.777-0.526-0.241-1.189-0.1095.045 -0.189-0.297-0.152-0.001-0.002-0.048-0.079-0.036-0.785-0.774-0.441-0.181-1.664-0.135-0.8945.15 -0.211-0.198-0.001-0.002-0.069

Table 1: Erie Elasticities with All Offers

-0.001Table 2: Bolded Elasticities emphasize schools that are very close to each other.

-1.338

-1.427-0.129-1.035-0.24

-0.216

-0.116-0.911-0.252-0.3614.716

-0.0-0.001-0.0-0.001-0.0-0.0-0.00.048

-0.0

-0.001

-0.0

-0.001

-0.001

-0.001

-0.0

-0.001

-0.0

-0.001

-0.0

4.993 -0.092-0.0-0.001-0.001

-0.255

-0.171-0.0014.995 -0.0

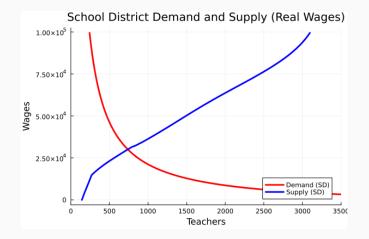
-0.001-0.002-0.0

|    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 0      |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1  | 0.944  | -0.555 | -0.016 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | -0.185 | 0.0    | -0.001 | -0.001 | -0.0   |
| 2  | -0.353 | 1.562  | -0.006 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | -1.013 | 0.0    | -0.0   | -0.0   | -0.001 |
| 3  | -0.004 | -0.002 | 0.848  | -0.008 | -0.02  | -0.013 | -0.032 | -0.015 | -0.089 | -0.094 | -0.033 | -0.008 | -0.074 | -0.091 | -0.201 | -0.003 |
| 4  | 0.0    | 0.0    | -0.05  | 1.267  | 0.0    | 0.0    | -1.077 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | -0.001 | -0.002 | -0.0   |
| 5  | 0.0    | 0.0    | -0.104 | 0.0    | 0.754  | -0.13  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | -0.237 | -0.002 | -0.005 | -0.0   |
| 6  | 0.0    | 0.0    | -0.064 | 0.0    | -0.127 | 0.341  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | -0.002 | -0.003 | -0.0   |
| 7  | 0.0    | 0.0    | -0.157 | -0.822 | 0.0    | 0.0    | 1.175  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | -0.005 | -0.008 | -0.0   |
| 8  | 0.0    | 0.0    | -0.073 | 0.0    | 0.0    | 0.0    | 0.0    | 1.683  | -0.376 | 0.0    | -0.675 | 0.0    | -0.179 | -0.001 | -0.005 | -0.0   |
| 9  | 0.0    | 0.0    | -0.756 | 0.0    | 0.0    | 0.0    | 0.0    | -0.67  | 2.747  | 0.0    | -0.492 | 0.0    | -0.57  | -0.011 | -0.044 | -0.0   |
| 10 | 0.0    | 0.0    | -0.158 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.357  | 0.0    | 0.0    | 0.0    | -0.004 | -0.007 | -0.001 |
| 11 | 0.0    | 0.0    | -0.16  | 0.0    | 0.0    | 0.0    | 0.0    | -0.693 | -0.283 | 0.0    | 1.63   | 0.0    | -0.346 | -0.002 | -0.01  | -0.0   |
| 12 | -0.137 | -1.178 | -0.025 | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 1.447  | 0.0    | -0.001 | -0.001 | -0.001 |
| 13 | 0.0    | 0.0    | -0.492 | 0.0    | -0.305 | 0.0    | 0.0    | -0.25  | -0.446 | 0.0    | -0.47  | 0.0    | 1.881  | -0.008 | -0.026 | -0.0   |
| 14 | -0.006 | -0.003 | -4.013 | -0.01  | -0.019 | -0.015 | -0.041 | -0.009 | -0.055 | -0.112 | -0.02  | -0.008 | -0.051 | 3.891  | -0.192 | -0.0   |
| 15 | -0.003 | -0.001 | -4.164 | -0.008 | -0.02  | -0.012 | -0.031 | -0.021 | -0.108 | -0.091 | -0.043 | -0.008 | -0.081 | -0.09  | 4.797  | -0.0   |
| 0  | -0.0   | -0.001 | -0.003 | -0.0   | -0.0   | -0.0   | -0.0   | -0.0   | -0.0   | -0.001 | -0.0   | -0.001 | -0.0   | -0.0   | -0.0   | 0.059  |

#### Table 3: Erie Elasticities with Restricted Offers

Table 4: Bolded Elasticities emphasize schools that are very close to each other.

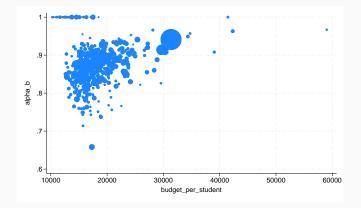
- If labor supply is not binding then we just have identification from the first-order condition from cost minimization.
- Thus as in Cobb Douglas


$$\frac{\gamma}{1-\gamma} = \frac{w_j T_j}{B_j - w_j T_j}$$

 Note: fringe benefits a huge part of compensation: around \$0.50 for each \$1 in wages: call this fringe inclusive wage ŵ.

- But if labor supply is binding (given the wage), then there is upward censoring on the teacher share.
- Use a moment inequality estimator.

$$egin{aligned} \mathcal{Q}(\gamma) &= \sum_{j} (\gamma - rac{\hat{w}_{j} T_{j}}{B_{j} - \hat{w}_{j} T_{j}})^{+2} 1( ext{binding labor supply}_{j}) \ &+ (\gamma - rac{\hat{w}_{j} T_{j}}{B_{j} - \hat{w}_{j} T \hat{w}_{j}})^{2} 1( ext{non-binding labor supply}_{j}) \end{aligned}$$


• Estimate is:  $\hat{\gamma} = 0.343$ .



• Maximize Nash Product (conditional on other wages)

$$\mathcal{N}(w_j, w_{-j}) = W(T_j, B_j - w_j T_j)^{\alpha_b} [w_j T_j]^{1-\alpha_b}$$

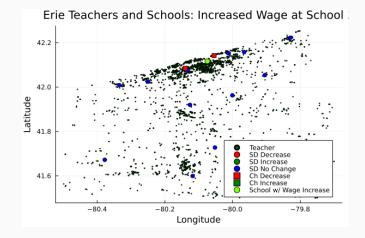
- Conditional on  $T_j$  and  $w_j$ , find the  $\alpha_b$  by school district that solves the FOC (à la Grennan)
- Fixing the Charter Schools Bargaining Parameters at  $\alpha_b = 1$ .



- Top are charter schools pinned to 1.
- Small correlation between budget per student and bargaining parameter.

- 1. Fix  $(\sigma, r)$ .
- 2. Estimate Labor Supply Parameters.
- 3. Estimate Labor Demand Parameters.
- 4. Estimate Bargaining Parameters.
- 5. Predict wages  $\hat{w}(\sigma, r)_j$  and teachers  $\hat{T}(\sigma, r)_j$ .
- 6. Match these to wages and teacher numbers, in particular for charter schools.

Preliminary Evidence


Structural Model

Estimation

- Posted Wages.
- Social Planner.
- Nash Bargaining

|                      | Real    | Nash Bargaining | Planner | Posted  |
|----------------------|---------|-----------------|---------|---------|
| Weighted Median Wage | 55,326  | 56,001          | 50,721  | 45,001  |
| Number of Teachers   | 107,591 | 107,428         | 120,777 | 119,233 |

- Planner wages are always higher than posted wages.
- But this hides a lot of heterogeneity
  - Nash Bargaining wages higher than posted wages in 419 districts, lower in 92 of these.
  - This is strictly due to externalities between districts.
- Reasonable Model fit of the Nash Bargaining model on aggregate.



Thank you!