Dynamic Monopsony with Large Firms and Noncompetes

Axel Gottfries¹ Gregor Jarosch²

¹University of Edinburgh ²Duke University

FTC Micro Conference, 11/14/24

twofold contribution

- develop a generalized job ladder framework with wage posting
 - rich and flexible, yet tractable
 - natural laboratory for labor mobility themes
- application to noncompete agreements
 - ▶ theoretical: can sharply suppress wages
 - quantitative: blanket ban in US, compute wage gains depending on local labor market features

framework for anti-competitive labor market practices

- ▶ frictional labor market with wage posting and turnover due to on-the-job search (Burdett-Mortensen (98))
- several new features:
 - large employers
 - can speak to concentration, mergers, ...
 - decreasing returns
 - can endogenize size and market structure
 - 3 market-level product demand curve (two-sided market power)
 - less restrictive, wider range of cases
 - hiring cost, rather than vacancy cost
 - ▶ more tractable (and relevant)
- natural lab for competition issues related to worker mobility and turnover

assessing non-competes

- impact of noncompetes on the labor market
 - can sharply depress wages when wide-spread, unraveling competition
 - strong spillovers to other firms
 - misallocation of workers across firms
 - ▶ welfare impact ambiguous since competition via turnover is inefficient
- quantitative impact of noncompetes on wages
 - large when
 - market is concentrated
 - turnover costs are high
 - product demand is inelastic
- measurement of labor market competition
 - careful with interpretation of
 - cross firm wage differentials for impact of noncompetes
 - quit elasticities and mark-downs for labor market competitiveness

lit

- ▶ modern/dynamic monopsony (Burdett-Mortensen (98), Manning (03, 11,...), Dube et al (19,20))
- ▶ neoclassical monopsony (Robinson (33), Card et al (16), Berger et al (22))
- ▶ size and market structure with frictions: Jarosch et al. (23)
- ▶ non-competes in a frictional setting w/ bargaining: Shi (22)

model (w/o noncompetes)

model

standard pieces: random search, on-the-job-search, posted wages (BM)

- ightharpoonup relative search efficiency of employed s
- ► firms commit to pay posted wage
- ightharpoonup may post mix of wages, cdf $F_j(w)$
- \triangleright workers become unemployed at rate δ , then receive flow utility b
- choose a reservation wage, otherwise just float up the job ladder
- \triangleright cont. time, discount rate r
- restrict to stationary equilibria

not-so-standard pieces

- \triangleright hiring technology: firms pay a cost c per hire
 - always obtain desired size, no vacancy cost
 - but lose workers to unemployment and competitors, so costly turnover
 - workers contact firm i with endogenous frequency ψ_i $(s\psi_i)$
- ▶ granular market structure: M large firms
- \triangleright d.r.s: firm i with employment N produces homogeneous output $x_i N^{\alpha}$
- ▶ reverse-engineer downward sloping market-level product demand

firm problem in words

- ► firm choose
 - intensity at which workers contact their job openings, ψ_i
 - ightharpoonup distribution of posted wages $F_i(w)$
- ▶ to maximize revenue net of wage bill and turnover cost
- ▶ taking as given (standard Nash)
 - ▶ the reservation wage
 - each other's actions

solution

- ▶ despite added dimensions remains highly tractable
 - ▶ w/ symmetric firms: can solve model by hand
 - \triangleright w/ heterogeneous firms (x_i, c_i) : simple algorithms to construct equilibria

concentration and wages

- ▶ more concentration can, but need not hurt workers
 - ▶ PE: firms do not compete with themselves, fewer competitors lower pay
 - ► GE: lower turnover drives up labor demand

equilibrium markdowns

- $ightharpoonup m \equiv \text{marginal revenue product of labor}$
- ightharpoonup \Rightarrow optimal hiring + user cost equated across all wages posted:

$$\frac{m - w}{r + \delta + \sum_{j \neq i} s\psi_j (1 - F_j (w))} = c_i$$

- \blacktriangleright Mark-down m/w is endogenous and covers turnover cost
- ▶ must rise if turnover (competition) rises

quit elasticity

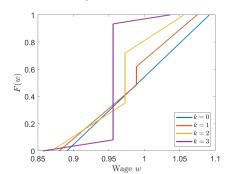
- quit elasticity often used as measure of labor market competitiveness (Manning 2003)
 - ▶ logic: competitive labor market, can hardly deviate from prevailing wage
 - but consider what happens as $\lambda \to 0$
- here, elasticity is endogenous and often misleading indicator of competitiveness, worker well-being, efficiency,...
- ▶ no "neoclassical" mapping to
 - allocative efficiency / underemployment
 - distributional outcomes

non-competes: theory

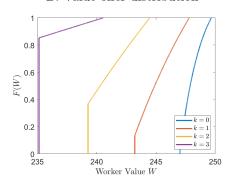
some history

- ▶ Stigler (61,62) & McCall (1970): Study repeated sampling with dispersed prices/wages, characterize reservation values
- ▶ Diamond (1971): Can't sustain dispersed prices for homogeneous products/workers in equilibrium ("Diamond Paradox")
- ▶ Burdett & Mortensen (98): Can't sustain any mass in job offer distribution in a job ladder model. Why? Deviation, slightly above \Rightarrow Competition

adding non-competes to the model


- ▶ model non-competes as take-it-or-leave-it offer that stipulates
 - lacktriangle permanent wage offer w_c
 - 2 worker commits not to leave (job-to-job)

what do non-compete jobs offer to workers


- \triangleright key result: all non-competes give same value as regular job paying w_r
 - reason: no need to worry about competition
 - ightharpoonup now have mass at the bottom rung of job ladder \Rightarrow spillovers
 - firms that can offer non-competes all post w_c
 - $\,\blacktriangleright\,$ generally, $w_c>w_r$ (same value, but lose option value, so compensating differential)
 - cross-firm wage differentials misleading re impact of non-competes

impact of non-competes

A. Wage offer distribution

B. Value offer distribution

Diamond restored

• when all firms can offer non-compete: $w_c = w_r = b$

⇒ illustrates that non-competes, when wide-spread, can sharply depress wages by eroding job-ladder competition

non-competes — welfare

- two opposing forces re welfare
 - $oldsymbol{0}$ show that firms w/ noncompetes have more employment, but same d.r.s. production function \Rightarrow misallocation
 - 2 however, competition here is wasteful
 - inefficient worker churn yields wage gains but socially costly
- ▶ a priori unclear whether a ban yields efficiency gains
 - numerically, get ban slightly reduces welfare
- caveat
 - ▶ misallocation (workers→firms) if job ladder improves allocation (here: doesn't), then additional costs of shutting it down

quantitative analysis of noncompetes

calibration strategy

- ▶ fairly standard job ladder model to calibrate (EU, EE, UE,..)
- \triangleright set $\alpha = .64$
- ▶ target hiring cost $\frac{c}{E[w]}$ to 2 monthly wages.
- remainder: x_i, M, η set separate for each application.

quantitative strategy

- ▶ calibrate/validate via empirical studies
- Prager & Schmitt (21) study hospital mergers
 - pick up response of wages and employment
 - ▶ comment: framework can straightforwardly be used for merger analysis
- 2 Lipsitz & Starr (20) study ban of noncompetes in Oregon
 - pick up response of wages, turnover, spillovers

main application: banning non-competes

- ▶ FTC: 20% of US workforce under non-compete, proposed blanket ban
 - ▶ many state level restrictions (recently, NY), lots of discussions in Europe
- ▶ surprisingly common for low-skilled workers (where posting seems natural and human capital and business stealing issues seem less relevant)
- surprisingly uniform across firm types
- baseline calibration: set M=10 (symmetric) and k=2, import η from Oregon experiment
- ▶ then focus on heterogeneity across markets

baseline results: banning non-competes

	Baseline
Share non-comp.	0.212
$\Delta \log(\mathrm{E}[w])$	0.04
Δu	1.198
$\Delta \log(\text{output})$	-0.008
Δ Utility	-0.009
$\Delta \log(\mathrm{jtj})$	0.354
$\Delta \log(w_{nc})$	0.067
$\Delta \log(w_{rest})$	0.032

- ▶ large wage and mobility increases
- ▶ large spillovers
- employment and output slightly down due to rise in turnover cost (misallocation channel dominated)

training cost

	Baseline	c/E[w]=5
Share non-comp.	0.212	0.226
$\Delta \log(\mathrm{E}[w])$	0.04	0.05
Δu	1.198	1.594
$\Delta \log(\text{output})$	-0.008	-0.01
Δ Utility	-0.009	-0.017
$\Delta \log(jtj)$	0.354	0.349
$\Delta \log(w_{nc})$	0.067	0.118
$\Delta \log(w_{rest})$	0.032	0.03

- ▶ non-competes shifts rents
- ▶ more rents when training costs are high

demand elasticity

	Baseline	$\eta = 0.5$	$\eta = 5$
Share non-comp.	0.212	0.224	0.234
$\Delta \log(\mathrm{E}[w])$	0.04	0.019	0.001
Δu	1.198	1.592	1.965
$\Delta \log(\text{output})$	-0.008	-0.011	-0.013
Δ Utility	-0.009	-0.01	-0.01
$\Delta \log(\mathrm{jtj})$	0.354	0.345	0.335
$\Delta \log(w_{nc})$	0.067	0.046	0.027
$\Delta \log(w_{rest})$	0.032	0.011	-0.007

- ▶ banning non-competes turnover cost
- ▶ if this cannot be (partially) passed into prices, gains to workers evaporate

coverage

	Baseline	k=5	k=c/E[w]=5
Share non-comp.	0.212	0.513	0.528
$\Delta \log(\mathrm{E}[w])$	0.04	0.113	0.168
Δu	1.198	3.208	4.602
$\Delta \log(\text{output})$	-0.008	-0.022	-0.032
Δ Utility	-0.009	-0.022	-0.039
$\Delta \log(\mathrm{jtj})$	0.354	1.066	1.018
$\Delta \log(w_{nc})$	0.067	0.126	0.198
$\Delta \log(w_{rest})$	0.032	0.1	0.136

▶ logic: Diamond restored

heterogeneity

- conclude with a more full blown exercise
- ▶ firms differ in productivity and hiring cost
- study case where low productivity / high productivity firms use noncompetes

	Baseline	High	Low
Share non-comp.	0.212	0.186	0.207
$\Delta \log(\mathrm{E}[w])$	0.04	0.069	0.011
Δu	1.198	0.912	0.933
$\Delta \log(\text{output})$	-0.008	-0.007	-0.003
Δ Utility	-0.009	-0.008	-0.004
$\Delta \log(\mathrm{jtj})$	0.354	0.261	0.297
$\Delta \log(w_{nc})$	0.067	0.092	-0.028
$\Delta \log(w_{rest})$	0.032	0.064	0.019

▶ logic: non-competes allow firms to move to the bottom of the job ladder

banning non-competes: quantitative lessons

- wage gains of about 4%
- ② large wage gains if 1) large frictions, 2) high coverage, 3) low product demand elasticity
- typically welfare down, but small losses compared with wage gains
 ⇒ can "protect" workers from this practice at low cost (?)

ongoing work on employer cartels

- ▶ use same framework to think about wage-fixing cartels
- ▶ main finding: outside competition determines harm and profitability.
- ▶ hence, wage losses large / cartels more likely when
 - market is concentrated
 - labor market has slack
 - ▶ the span of control is small
 - product demand is elastic
 - cartel also colludes in the product market

conclusion

- ▶ generalized job ladder framework (demand, production, size)
- natural labratory to think about anti-competitive practices centered around worker mobility
- ▶ large wage gains, small welfare losses from banning non-competes

Large firms in the labor market

Large firms can, in principle, affect

- workers' actions (reservation)
 - ▶ assume that workers do not observe and do not learn firms' choices so that the reservation wage is taken as fixed
- ② other firms' labor market actions (posted wages and contact rates)
 - \blacktriangleright assume that firms simultaneously commit at time $0\to$ firms take other firms' actions as given
- **3** how other firms choices (ψ_j, F_j) map to employment N_j
 - ▶ assume that firms also commit to employment and can hire at high cost from outsourcing firm outside the model

Back