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Abstract 

Privacy restrictions imposed by browsers such as Safari and Chrome limit the quality of 
individual-level data used in personalization algorithms. This paper investigates the consequences 
of these privacy restrictions on consumer, seller and platform outcomes using data from Wayfair, a 
large US-based online retailer. Large-scale randomized experiments indicate that personalization 
increases seller and platform revenue and leads to better consumer-product matches with 10% 
lower post-purchase product returns and 2.3% higher repeat purchase probability. Privacy 
restrictions can distort these benefts because they limit platforms’ ability to personalize. To 
evaluate privacy restrictions of interest, we (i) re-train the platform’s personalization algorithm 
with lower-quality data and generate counterfactual recommendations, and (ii) next, we simulate 
consumers’ search and purchase behavior under counterfactual recommendations using structural 
modeling. We fnd that two main policies imposed by Safari and Chrome disproportionately hurt 
price responsive consumers and small/niche product sellers. To address this, we propose and 
evaluate a probabilistic recognition algorithm that associates devices with user accounts without 
using exact user identity. Our fndings demonstrate that this approach mitigates welfare and 
revenue losses signifcantly, striking a balance between privacy and personalization. 

Keywords: consumer privacy, personalized recommendations, large-scale A/B tests, 
multi-session consumer search, Probabilistic Identity Recognition, Gaussian Processes 
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1. Introduction 

Data collected about consumers by businesses underpin online personalization of product rankings 

(e.g., Amazon, Wayfair), movies (e.g., Netfix), music (e.g., Spotify), and other oferings. However, 

the growing availability and potential mishandling of individual-level data raises signifcant privacy 

concerns. Regulators are concerned that consumers have limited knowledge of how their data are 

used and of the inferences frms may draw about them based on this personal information.1 To 

address these concerns, regulators and internet browsers have enforced limitations on online consumer-

tracking. For instance, Safari may log consumers out of the website and clear their browsing history 

after seven days of inactivity, and Chrome plans to prevent cross-website user-tracking starting in 

2024.2 Under these restrictions, unless consumers log in, online platforms will no longer be able 

to recognize them continuously, and therefore will have an incomplete (fragmented) view of their 

browsing history. When platforms use this fragmented data in their personalization algorithms, 

it may afect the quality of recommendations made to users. Yet despite the growing number of 

privacy restrictions, there is little empirical evidence on their necessity and impact on the economic 

outcomes of consumers, sellers, and platforms. Such evidence is critical both to help design future 

data regulation and to help frms adapt their strategies to an increasingly privacy-conscious world. 

The current paper has three goals. First, we use a large-scale feld experiment conducted with 

Wayfair, a large US-based online retailer, to establish that personalized recommendations lead to 

better consumer-product matches and beneft both sellers and the platform. Second, we quantify the 

extent to which privacy restrictions distort personalization benefts. While the feld experiment fully 

disabled personalization, under actual privacy restrictions platforms retain personalization but use 

fragmented (distorted) data. To assess the impact of privacy restrictions, frst, we re-train platform’s 

personalization algorithm with distorted data and generate counterfactual recommendations. Next, 

we simulate consumers’ search and purchase behavior under counterfactual recommendations using 

a structural model. We estimate the model exploiting experimental variation in the data. We 

show that browser-induced privacy restrictions reduce the algorithm’s prediction accuracy and 

result in lower-quality recommendations. The counterfactual simulations indicate that lower-quality 

recommendations decrease consumer welfare by 30% (from $25 to $18), and the adverse efects 

are more pronounced for price-responsive consumers. Moreover, smaller-revenue sellers and niche-

product sellers3 experience a disproportionate revenue loss of 8.6%, while larger sellers are relatively 

unafected. Third, to help platforms mitigate the negative consequences of privacy restrictions, 

we evaluate probabilistic recognition algorithm proposed in Korganbekova and Zuber (2023). The 

machine learning algorithm probabilistically associates devices with unique user identities by exploiting 

1Competition & Markets Authority UK Report 
2See Google delays move away from cookies in Chrome to 2024. 
3We use Deep Learning tools to identify products that are visually less similar to mass-market products. 

1 

https://www.gov.uk/government/publications/algorithms-how-they-can-reduce-competition-and-harm-consumers/algorithms-how-they-can-reduce-competition-and-harm-consumers
https://techcrunch.com/2022/07/27/google-delays-move-away-from-cookies-in-chrome-to-2024/


detailed behavioral data and IP address information, even when the exact user identity is unknown. 

We show that the algorithm can recover up to 56% of welfare loss for the consumers and up to 73% 

of revenue loss for smaller sellers, providing a promising solution to mitigate the impact of privacy 

restrictions. Next we describe each of these fndings in more detail. 

To verify whether privacy policies should be a cause for concern, we frst quantify the efects of 

personalization on consumers and sellers. To this end, we ran a large-scale feld experiment where we 

randomly turned of personalization on product ranking pages on Wayfair. The experiment included 

9 million consumers and ran for two years, from January 2020 to December 2021. Consumers in the 

treatment group saw personalized product rankings tailored to their browsing histories, while control 

group consumers saw non-personalized bestseller rankings.4 We fnd that consumers in the treatment 

(personalized) group were 10% less likely to return a product post-purchase and were 2.3% more likely 

to repeat purchase a product in the same product category. These results suggest that consumers 

in the personalized group got better product matches than consumers in the non-personalized 

group. Moreover, unlike bestseller rankings, which highlight the most popular products, personalized 

rankings provide smaller sellers greater opportunity for prominence on the platform. Specifcally, 

smaller-revenue and more niche sellers’ products are 15% more likely to be shown on top of product 

ranking pages, and sellers earn up to 87% more revenue from personalized impressions compared 

to bestseller rankings. Overall, the experimental results suggest that personalization benefts both 

consumers and small and more niche product sellers. 

Next, we quantify the extent to which browser-induced privacy restrictions distort personalization 

benefts. To do that, we need to evaluate consumer choices and compare seller and platform outcomes 

in two worlds: a privacy-unrestricted world in which platforms retain the ability to track consumers, 

and a counterfactual privacy-restricted world in which the platform continues to personalize but uses 

incomplete (fragmented) data.5 

We leverage our access to the platform’s personalization algorithm to generate counterfactual 

personalized rankings that would have been shown under privacy restrictions. First, we distort the 

individual-level data to mimic the impact of the privacy policy of interest. We focus on two privacy 

policies implemented by largest browsers: Chrome and Safari. For instance, to evaluate Safari’s 

policy that clears browsing history after seven days of inactivity, we keep only the most recent seven 

days’ worth of browsing data for each consumer. Next, we re-train the personalization algorithm with 

the new, distorted data input. The re-trained algorithm generates counterfactual product rankings, 

and we simulate consumers’ response to these ranking using our structural model, which we describe 

next. 

4Bestseller rankings are generated based on the aggregate historical popularity of the products. 
5Note that the experiment turned of personalization completely; however, under privacy restrictions, the platform 

will continue personalizing, using fragmented data. 
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To evaluate how consumer choices will change under newly generated personalized rankings, we 

develop and estimate a demand-side model of multi-session consumer search. The model captures 

the main features of the online purchase funnel: viewing, clicking, and purchasing. Viewing depends 

on product rankings generated by the platform, and the platform can control which products are 

more prominent in the search results. Consumers can click only on the products they view. We 

model viewing and clicking separately because we have pixel-level data that allow us to distinguish 

between the two. 

We describe consumer behavior as follows. Consumers know their preferences over the product 

characteristics observable from the ranking pages (e.g., prices, ratings, images),6 but they have 

uncertainty regarding the unobservable product characteristics that they learn only after clicking 

on a product (e.g., reviews). While on the ranking page, consumers construct a utility index based 

on the observable characteristics of the products they have viewed. They have rational beliefs over 

the indices of the products they have not yet viewed. Further, they choose to click on a product 

if the maximum product index within the viewed set exceeds the expected maximum index within 

the non-viewed set of products. After clicking on a product, consumers learn the true utility of the 

product and update their beliefs about all the remaining products’ quality. Next, consumers decide 

among (i) continuing to click, (ii) viewing additional products, (iii) purchasing a clicked product, 

or (iv) leaving. If they return to the website for subsequent sessions, the platform may personalize 

product rankings, and consumers follow the same search process under new rankings. 

We model consumer’s utility as a Gaussian Process over the observable product characteristics, 

which enables us to incorporate the key components of the model: viewing, clicking, purchasing, and 

learning. Moreover, the Gaussian Process specifcation also allows us to accommodate multi-session 

search: the consumers’ posteriors from the previous session become their priors in the next session. 

We use experimental variation in the product rankings and pixel-level data to estimate consumer 

preferences, search costs, and learning parameters. We validate the model using data from a natural 

experiment: a short-term Chrome privacy policy change in 2020.7 

In the counterfactuals, we fx estimated model parameters and simulate consumer search and 

purchase patterns under generated counterfactual personalized rankings that would have been shown 

under privacy restrictions. We focus on the two most prominent policies implemented by Safari and 

Chrome, as mentioned above. 

We fnd that the policy that clears consumers’ browsing history after seven days of inactivity 

(Safari) leads to a nearly 50% reduction in the prediction accuracy of the personalization algorithm. 

This results in lower-quality recommendations, which in turn reduce consumer welfare by 19% (from 

6We project each image into two-dimensional space using Siamese Neural Network and UMAP, and directly use 
these vectors in the structural model. 

7The policy was introduced at the beginning of the pandemic and afected users of a specifc Chrome version. 
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$25 to $20) and decrease smaller sellers’ revenue by 5.6%. For the Chrome policy that blocks 

cross-website tracking and afects consumers arriving from advertising channels (26% of the trafc), 

we fnd qualitatively similar but larger efects. 

The counterfactual analysis yields several important insights. First, privacy policies 

disproportionately afect consumers who are more price responsive and have high search costs. 

These consumers either leave the website faster, as they do not see relevant product rankings, or tend 

to buy lower utility products. Second, the personalization algorithm tends to switch to emphasizing 

the popular products due to lack of data on smaller sellers. This leads to worse outcomes for the 

smaller/niche sellers. Third, while the platform loses revenue because of privacy restrictions, the 

impact on its instantaneous proft is relatively small. The reason is that larger sellers’ products are 

easier and cheaper to ship than those of smaller sellers. Overall, these results highlight that privacy 

restrictions may hurt more vulnerable consumer groups and smaller sellers, which necessitates careful 

consideration of alternative policy design. 

In the last part of the paper, we explore alternative strategies that platforms may take to mitigate 

the negative consequences of privacy restrictions. In Korganbekova and Zuber (2023), we propose 

using IP address information as well as consumers’ detailed behavioral data to probabilistically 

recognize consumers even when the exact user identity is unknown. Structural model described above 

allows us to evaluate the algorithm. First, we obfuscate consumer identity as if it is not known. For 

each device, we predict which user the device belongs to. Next, we generate personalized rankings 

based on the predicted user’s browsing history. Finally, we simulate consumer search and purchase 

process using the newly generated rankings according to the structural model. We show that this 

intervention can recover up to 56% of consumer welfare losses and up to 73% of small seller revenue. 

Therefore, even under privacy regulation, platforms can adapt their strategies to continue showing 

personalized content. 

In this paper, to analyze the impact of privacy restrictions, we focus on one retailer: Wayfair. 

That brings up the question of generalizability, and whether our results are specifc to Wayfair’s 

personalization algorithm. We believe our results are generalizable to other online platforms. While 

diferent platforms use separate recommendation algorithms, these algorithms are ubiquitous and 

relatively standard. For example, major platforms often feature their algorithms as part of academic 

papers and workshops, which leads to adoption of similar algorithms by other platforms (see YouTube 

Covington, Adams and Sargin (2016); Pinterest Eksombatchai, Jindal, Liu, Liu, Sharma, Sugnet, 

Ulrich and Leskovec (2018); Wayfair Mei, Zuber and Khazaeni (2022); and Amazon Linden, Smith 

and York, 2003. It is also unlikely that the platforms can drastically improve their personalization 

algorithms under privacy restrictions, given that the main issue is not the algorithm but rather the 

inability of the platforms to recognize consumers. 
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2. Related Literature 

This paper contributes to several strands of Economics and Marketing literature. First, the 

paper contributes to the privacy literature. A large number of empirical papers study the impact 

of European General Data Protection Regulation (GDPR) on frm outcomes (e.g., Aridor, Che, 

Nelson and Salz (2020), Goldberg, Johnson and Shriver (2019), Johnson, Shriver and Goldberg 

(2023), Zhao, Yildirim and Chintagunta, 2021). While GDPR’s consent-based policy asks users to 

allow tracking, our paper focuses on policies that block online tracking by default. Our two-year, 

long-term experiment and unique rich data allow us to credibly estimate the efects of personalization 

on consumers, sellers, and the platform. In a related paper, Sun, Yuan, Li, Zhang and Xu (2021) ran 

a similar experiment with Chinese retailer Alibaba, but their experiment ran only for seven hours, 

preventing conclusions regarding long-term consequences of personalization. Moreover, we develop a 

structural model that allows us to mimic and evaluate not only full disablement of personalization, 

but to simulate a world in which platforms continue to personalize but use fragmented data. 

Second, our fndings extend the data fragmentation literature. Data fragmentation happens 

because of privacy restrictions, when instead of observing consumers’ full browsing history, the 

platform is unable to track consumers over time and, therefore, observes only disconnected 

(fragmented) partial views of their browsing history. Prominent papers in this area include those by 

Coey and Bailey (2016) and Lin and Misra (2022), who examine the analytic form of the estimation 

bias caused by data fragmentation. Our paper empirically examines the changes in the predictive 

performance of personalization algorithms (i.e., training accuracy) and extensively describes the 

efects of data fragmentation on consumer, seller, and platform outcomes. Wernerfelt, Tuchman, 

Shapiro and Moakler (2022) study a similar phenomenon in the Facebook advertising context. 

Third, we contribute to the personalization and consumer search literature. There is a large 

empirical search literature that estimates structural search models built on the tractable solution 

ofered by Weitzman (1978) (e.g., Kim, Albuquerque and Bronnenberg (2010), Ursu (2018), Honka 

and Chintagunta (2017), Compiani, Lewis, Peng and Wang (2021), Morozov (2023), Seiler (2013), 

Seiler and Pinna, 2017). Our model has several important distinctions compared to extant work. First, 

motivated by the empirical patterns in the data, we disentangle viewing a product and clicking on it. 

The pixel-level data allows us to move away from one of the main assumptions in the aforementioned 

papers, i.e., that of consumers’ full awareness. Consumers in our model have limited awareness 

of the products, and the platform’s rankings afect their awareness given that platforms can make 

some products more prominent than others. Gibbard (2022) and Greminger (2022) were among the 

frst papers to allow for limited consumer awareness. However, to the best of our knowledge, our 

paper and Choi and Mela (2019) are the frst to use data enabling to separate treatment of viewing 

and clicking actions. Second, we allow for consumer learning in our model. The decision to model 
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consumer learning was driven by the empirical patterns in the data similar to the ones observed in 

Bronnenberg, Kim and Mela (2016) and Hodgson and Lewis (2022). Incorporating learning into the 

model requires us to resort to a near-optimal consumer search policy, as opposed to the optimal 

policy suggested by Weitzman (1978) under stricter assumptions. Given that we model search via 

Gaussian Processes, we use a near-optimal heuristic for optimal search policy: Upper Confdence 

Bound algorithm (Auer, 2002). We prove the fnite regret bounds of the algorithm in our setting in 

Appendix B. 

The remainder of the paper is organized as follows. Section 3 describes the empirical setting 

and data. In Section 4, we describe the experiment conducted with the platform and show the 

experimental results. In Section 5, we introduce the model and explain the estimation details. Section 

6 shows main counterfactual results. Section 7 concludes. 

3. Empirical Setting 

To study the impact of privacy restrictions on platforms, we have collaborated with Wayfair, a 

large US-based online retailer of furniture and home goods. Wayfair does not own sellers’ inventory, 

instead acting as an intermediary between product sellers and consumers. The platform owns and 

maintains the website interface and all personalization algorithms. In this section, we provide an 

overview of the platform’s interface and discuss how privacy restrictions may infuence consumer 

recognition within the platform’s ecosystem. 

Suppose consumers arrive at wayfair.com for the very frst time and search for the keyword 

’dining chairs’. Consumers are taken to a product category page, where the platform displays an 

ordered list of dining chairs (hereafter, “ranking page” or “product rankings”). Figure 1a shows 

an example of a ranking page. These pages typically feature 48-96 products allocated in a matrix 

form. Consumers can observe product images, prices, ratings, and numbers of ratings on the ranking 

pages. During the initial session, the platform does not recognize consumers and lacks information 

about their preferences. Therefore, the platform presents consumers with non-personalized bestseller 

product rankings. These rankings are based on the overall historical popularity of products and are 

not customized to the consumers’ browsing history. 

Clicking on a particular dining chair on the ranking page takes consumers to the product page 

where they can fnd detailed product descriptions, e.g., chair dimensions, materials used, assembly 

requirements, and other specifcations (Figure 1b). Many product pages include product reviews and 

ratings. Consumers can read these reviews for insights into the chair’s quality, comfort, durability, 

and overall customer satisfaction. On the product pages, consumers are presented with additional 

product recommendations known as Compare Similar Items (Figure 1b). These recommendations 

are not personalized based on the consumers’ browsing history but rather represent a set of products 
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Figure 1: Ranking pages and product pages 

(a) Product ranking page (b) Product page 

that are comparable to the product currently being viewed. Consumers can opt to click on one of the 

four recommended products within the widget, which will redirect them to the respective product’s 

page. 

Subsequently, consumers are presented with three options: (i) to continue searching by clicking or 

scrolling further, (ii) to make a purchase of the best product they have come across thus far, or (iii) 

to exit the website. Importantly, consumers retain the fexibility to revisit the website and continue 

the search process at any given point in time. 

In subsequent visits, consumer recognition becomes crucial. Suppose that during the initial 

session, a consumer exclusively clicks on blue chairs or applies a flter to see only blue-colored chairs. 

The website sets a cookie - a small text fle - on the consumer’s browser that keeps track of the 

specifc types of products consumer clicks on or types of flters she applies.8 These cookies, which 

are set by the wayfair.com website and are only readable and writable by this website, are called 

frst-party cookies. They allow websites to store valuable information about consumers’ browsing 

history on their domains. 

Next time the consumer re-visits wayfair.com, the website checks for the presence of any cookies 

associated with the wayfair.com domain on her browser. By examining the frst-party cookie fles, 

the platform identifes that the consumer had exclusively clicked on blue dining chairs in the past. 

The platform’s personalization algorithm incorporates the consumer’s preference for blue chairs 

and presents personalized rankings that prioritize blue chairs at the top of the results.9,10 This 

8Platforms can set cookies for many diferent consumer actions, such as sorting, adding a product to the basket 
page, and others.

9The layout of the ranking page looks exactly the same as the non-personalized pages, but products are ranked 
such that more relevant products to a consumer gain more prominence on the ranking page results. 

10It is worth noting that, at the time of this research, the platform employed single-category personalization, i.e. 
browsing data from other categories was not utilized in determining the rankings. 
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personalized approach may reduce search frictions and enhance the consumer’s browsing experience 

on the website. However, certain restrictions disallow frst-party cookie tracking. 

Privacy restrictions associated with frst-party cookies. In 2019, Safari introduced a 

new version of its browser that includes Apple’s Intelligent Tracking Prevention (ITP),11 which 

automatically removes frst-party cookies after a week of user inactivity. This feature not only logs 

consumers out but also requires Wayfair to reset frst-party cookies.12 As a result, if the consumer 

returns more than 7 days after the previous session, Wayfair loses access to the browsing information 

stored in the expired cookie, as it becomes inaccessible. 

Initially, frst-party cookie tracking restrictions impacted only those frst-party cookies that were 

used in third-party contexts, i.e., for cross-website user tracking. The restrictions had limited impact 

on the frst-party cookies used within the website itself (see Figure E4 and Table E11 ). However, 

since 2022, Safari has been strengthening the regulation and blocks frst-party cookie tracking more 

often, which afects the platform’s ability to recognize consumers.13 

Figure 2: Trafc sources 

Notes. This fgure shows the distribution of trafc by diferent arrival channels, e.g. 
Direct Trafc, Google etc. The total doesn’t sum up to 100, because one consumer 
can arrive through multiple channels. 26.1% of consumers arrive from Display 
advertising, and a large share of consumers arrive either from Google or from Direct 
Trafc. Unless consumers login, platform relies on third-party cookies for display 
ad recognition and on frst-party cookies for the consumers arriving directly to the 
website. 

Advertising is another critical aspect where platforms’ ability to recognize consumers is at risk. 

The platforms show re-targeted ads on third-party websites (display ads) to encourage consumers to 

re-visit the website. In our data, approximately 26% of trafc arrives from display advertising, which 

is a large portion of trafc (Figure 2). 

11See Apple’s Intelligent Tracking Prevention (ITP). 
12Technically, the cookies that are set to expire in 7 days are the ones that are set from JavaScript. However, 

majority of cookies are set through JavaScript. 
13See the Apple’s secret Safari cookie crackdown article for more information. 
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Display advertising works via third-party cookies that facilitate cross-website user tracking. To 

illustrate, let’s say a consumer leaves Wayfair and visits weather.com. On weather.com, third-party 

companies like Wayfair or data aggregators can place their cookies. As a result, when weather.com 

loads, it reads the Wayfair cookie and displays ads that align with the consumer’s browsing history 

on wayfair.com (Figure 3).14 Third-party cookies are used both to show advertising and to recognize 

consumers if they click on an ad and re-visit the website. 

Figure 3: Wayfair ads on weather.com 

Notes. This fgure shows an example of the retargeted 
advertising that was served through third-party cookies. 
The screenshot was taken by the authors on weather.com. 

Privacy restrictions associated with third-party cookies. Safari and Firefox already block 

third-party cookie tracking,15 and the largest web browser Chrome16 plans to block them in 2024. 

Blocking third-party cookies limits platforms’ ability to serve advertising and to recognize consumers. 

Under these restrictions, all third-party requests reset users’ cookie fles which means that platforms 

will not be able to recognize users and pull their browsing history. 

Notably, when consumers voluntarily log in during each visit, the platform can recognize them 

without relying on cookies. However, our data reveal that approximately 37% of consumers choose 

to log in, leaving the platform to rely on cookies for the recognition of 38% of consumers (Table 1), 

which corresponds to millions of consumers.17 

To summarize, platforms use frst- and third-party cookies to recognize consumers and to 

14In reality, the online ad system works in a more complex way. Third-party vendors form coalitions to map a 
user’s identifer from a demand-side platform to a data management platforms. This process is called cookie syncing 
and it is used by AdTech platforms, demand-side platforms, data-management platforms (DMPs), ad exchanges, 
supply-side platforms (SSPs) and various other data providers. This means that the user data is exchanged across 
diferent platforms, which creates signifcant privacy concerns. See DMPs and Cookie Syncing for details. 

15For instance, Safari’s Intelligent Tracking Prevention browser setting prevents cookies being read in a third-party 
context. In the frst version of ITP, Apple limited third-party cookie reads to a 24-hour window, but rolled complete 
block later. Firefox followed Safari and by blocking third-party cookies in Version 50+ of the browser. 

16Chrome is the leading global browser with 62.85% share as of June 2023. See Browser market shares statistics. 
17To further examine the breakdown between frst-party and third-party cookie reliance, a rough estimation can 

be made. Among the 26% of display advertising trafc, assuming an average of 38.46% recognition through cookies, 
approximately 10% of the trafc depends on third-party cookie recognition. Similarly, if 37% of the trafc from Google 
Product Ads and Direct trafc log in and 38.46% are recognized through cookies, it can be inferred that frst-party 
cookies account for 26.3% of trafc recognition (=48.3% (Google) + 20.2% (Direct)) × 38.46% (cookie-recognized). 

9 

weather.com
https://www.gartner.com/en/marketing/insights/articles/how-does-a-data-management-platform-work
https://tinyurl.com/2fp4at3s
https://tinyurl.com/zbu9t9kn
https://weather.com
https://wayfair.com
https://weather.com
https://weather.com
https://weather.com


Table 1: Recognition rates by device types 

Overall Desktop Mobile Site App 

Logged in (%) 37.62 33.95 22.63 84.06 

Cookie-recognized (%) 38.46 44.22 48.69 8.43 

Not recognized (%) 23.92 21.83 28.68 7.51 

Total 100.00 100.00 100.00 100.00 

Notes. This table reports login and cookie-recognition rates by diferent devices. 
From the data, for each consumer who searched in dining chairs category, we 
determine whether she was logged in at least once, or was cookie recognized or 
never recognized. We then calculate corresponding shares overall, on desktop, 
mobile site and Wayfair app. 

personalize user experience. Approximately 38% of trafc is recognized via frst- and third-party 

cookies in the platform we collaborate with. Privacy policies block platforms’ access to the cookies 

and reset unique user identifers. This threatens platforms’ ability to recognize consumers and to 

personalize their experience. 

This paper aims to assess the impact of privacy restrictions on consumers, sellers, and the 

platform. Additionally, we explore alternative strategies that the platform can adopt to mitigate 

the consequences of these privacy restrictions. But frst, it is crucial to quantify the potential losses 

stemming from the absence of personalization. Therefore, after describing the data in the next 

subsection, we quantify the efects of personalization on consumers, sellers and the platform. 

3.1. Data 

In this subsection, we describe the data that was generously provided by Wayfair. Our main 

sample consists of 30 million consumers who browsed the platform in 2018-2022. Our data have 

several important and unique components. 

Clickstream data. We have access to Wayfair’s full high-frequency pixel-level clickstream data that 

tracks consumers’ actions on the website. The main data span the two-year experimental period from 

January 2020 to December 2021. We also have access to the historical data from 2018 to 2020, which 

we use to evaluate consumers’ and sellers’ historical outcomes. The data are at the device - customer 

id - URL - action timestamp level. Thus, each row in the data represents a single action, such as click, 

scroll, tap, hover, or zoom, taken by a consumer on a given device. Consumers’ behavior is captured 

across all platforms (e.g. desktop, tablet, mobile) and devices. We view the existing clickstream data 

as a relatively complete description of consumers’ browsing history. Note that every consumer can 

be associated with multiple devices and multiple browsers (see Table E10 ). The platform stitches 

together corresponding devices and browsers and links them to a unique consumer identifer for each 

consumer to the best of their ability. If consumers login, then it is straightforward for the platform 

to link browsing history. Otherwise, the platform relies on cookie fles to recognize consumers and to 
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build a relatively complete view of consumers’ browsing history across sessions and devices.18 

Pixel-level data. A unique aspect of our data is that for each consumer, we observe which products 

appeared on a consumer’s screen at each point in time. Thus, we can restore consumers’ scrolling 

behavior and explore which part of each page consumer viewed. The data are crucial to assessing 

consumers’ awareness of products, and it is similar in spirit to eye-tracking data. 

Login and trafc source data. At each point in time, we observe whether the consumer was 

logged in, the referrer URL (website the consumer was on before arriving on a focal webpage), and 

the channel consumer used to arrive on the website, such as Google ads or Direct Trafc.19 

Rankings and recommendations data. For a given URL in the clickstream data, we can re-create 

the layout of the webpages that were shown to the consumer. Most importantly for our setting, we 

can recover the ordered product rankings and recommendation widgets that were shown to each 

consumer. For the product rankings, we have determined which products were personalized and 

which ones were non-personalized on the ranking pages. Moreover, for all product pages, we kept 

historical scores outputted by a recommendation widget algorithm that allows us to determine the set 

of products that were shown on each product page as part of additional product recommendations. 

Transactions data. For each consumer, we observe the set of products they purchased (if any), 

corresponding prices of the products, and the indicator for whether the consumer returned the 

purchased item. We use these data to evaluate consumer choices and to proxy for the quality of 

product matches. In particular, we use product returns and repeat purchases to evaluate consumers’ 

satisfaction with the purchased products. 

Prices and wholesale costs. We observe a daily panel of each product’s prices, wholesale costs set 

by the seller, any discounts/allowances provided by the seller and shipping costs.20 We use these 

data to calculate product markups and margins to assess the platform’s proftability.21 

Seller-level data. For each seller on the platform, we observe the number of products they carry, 

the revenue earned for each product, and all the historical data on the wholesale costs and revenue. 

We use these data for seller-heterogeneity analysis. 

Product characteristics. We have data on product characteristics that are observable to the 

consumer from the ranking pages, i.e., prices, product rating, and number of ratings. Moreover, we 

also use data on products’ style, material, chair width, height, etc. in our descriptive analysis. 

Image data. We have access to images of products in select categories, namely, dining chairs, sofas, 

and ottomans.22 We use these images to train a Deep Learning algorithm, namely Siamese Neural 
18The platform backflls customer identifers whenever possible. It means that they retroactively add the unique 

customer identifers in case consumer logs in, for instance. 
19These data were used to plot Figure 2. 
20Wayfair uses a dynamic pricing algorithm and takes wholesale cost and any discounts set by the sellers as an input 

in the pricing formula. See Wayfair pricing. 
21For data sensitivity reasons, we only show relative changes in the profts whenever applicable and never reveal 

actual markups.
22We utilize multiple product categories to collect sufciently large training data and enable the model to learn 
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Network (Bell and Bala, 2015), which allows us to represent every image as a 512 × 1 vector (image 

embedding). We then calculate cosine similarities between the image vectors to determine niche 

products and run a heterogeneity analysis based on that. We tag products as niche if the cosine 

similarity of the product’s image to all the remaining images in the same category is low, i.e., the 

product difers from other products. We also use these image embeddings in our structural model. 

Details of the Deep Learning model training are given in Appendix G. 

To reduce data dimensionality, we focus on one product category: dining chairs.23,24 We chose 

the dining chairs as a category of interest for several reasons. First, it is a large category at Wayfair 

that contains more than 30,000 products and is a big-ticket category where the median and mean 

product prices are $349.99 and $431.99, respectively (Table 2). There is also signifcant horizontal 

diferentiation in the category because chairs difer in color, style, upholstery material etc., which 

creates heterogeneity in pricing (Table 3). Therefore, consumers must engage in extensive search: 

median consumer (among both purchasing and non-purchasing consumers), arrives for 2 sessions and 

spends 15 minutes on the website. Moreover, it takes some time for the consumers to decide which 

Table 2: Session summary statistics 

Observations Min Mean Median Max St.Dev. 
# of sessions 635,267 1.00 3.53 2.00 29.00 4.72 

Session Duration (minutes) 635,267 0.04 35.82 15.21 273.00 50.81 

Interarrival time (days) 274,745 0.00 14.09 8.00 59.00 15.39 

# of products 635,267 0.00 6.32 2.00 63.00 10.40 

Price ($) 35,873 4.46 431.99 349.99 2999.99 291.27 

Notes. This table reports summary statistics of consumer searches in dining chair category. 

product to purchase, which is why the median interarrival days is 8 days. Thus, this is a category 

where privacy restrictions may play an important role because at the next consumer visit, the cookie 

fles may already be deleted.25 Finally, this is the category where consumers tend to repeat purchase 

items. For instance, consumers may buy 1-2 chairs and subsequently purchase additional chairs. The 

repeat purchase behavior is important in assessing the customer satisfaction with the product. 

Overall, our data are unique because we observe consumers’ search behavior at a very granular 

level, including their pixel-level actions. Moreover, we know whether consumers logged in or were 

cookie recognized, as well as the channel they used to arrive to the website, e.g., advertising. The 

fact that we observe detailed consumer behavior and the sellers’ and platform’s price and cost data 

allows us to credibly evaluate the impact of privacy restrictions on all main parties on the platform: 

diverse image aspects, including shape diferences and other characteristics, across various product categories. 
23We explicitly state in the rest of the paper if we switch to analyzing all of the data in a particular analysis for 

statistical power purposes. 
24We deliberately selected a category that experienced minimal Covid-related impact, while consciously avoiding 

categories heavily afected by the pandemic such as ofce furniture or kitchen appliances. 
25Recall that the Safari policy will reset frst-party cookies in 7 days. 
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Table 3: Heterogeneity in dining chairs 

Upholstery Material Mean Price ($) Median Price ($) St.Dev. Price ($) % of Products 

Genuine Leather 739.10 579.00 565.93 10.18 

Fabric 547.77 419.99 412.51 43.92 

Faux Leather 472.98 369.99 354.47 26.63 

Velvet 450.88 334.99 362.24 19.06 

Metal 228.12 243.74 73.75 0.03 

Wood 226.89 225.99 75.92 0.07 

Plastic / Acrylic 161.88 180.49 69.58 0.08 

Wicker / Rattan 147.60 141.80 53.33 0.04 

Notes. This table reports the distribution of prices in dining chairs by upholstery material type. The table is sorted in 
descending order by frst column (mean price). 

the platform itself, sellers, and consumers. 

4. Experimental Results 

To quantify the efects of personalization on consumers, product sellers, and the platform, we 

ran a large-scale feld experiment, where we randomly turned of personalization on product ranking 

pages on Wayfair. This corresponds to the full disablement of personalization on the platform for a 

random sample of consumers. The experiment included 9 million consumers and ran for two years 

from January 2020 to December 2021. Consumers in the treatment group saw personalized product 

rankings tailored to their browsing histories, while control group consumers saw non-personalized 

bestseller rankings. Bestseller rankings are generated based on the aggregate historical popularity of 

the products, i.e., even if the platform had consumers’ browsing history, the data were not used. 

One could argue that personalization should beneft platforms, otherwise they would not run 

the algorithms. However, the efects of personalization on the consumers and product sellers are 

unclear. On the one hand, platforms have the incentive to provide better consumer-product matches 

to nurture long-term consumer loyalty. On the other hand, regulators are concerned that platforms 

may prioritize their own commercial interests over better consumer product-matches. For instance, 

the platform could show higher margin items to the consumers they view as less price elastic.26 In 

the next subsections, we empirically investigate which mechanism prevails. 

To illustrate the experimental variation, suppose there is a consumer who clicked on blue dining 

chairs during the frst session and a consumer who clicked on the white chair (left-hand side of Figure 

4). When consumers re-visit the website, if they were randomized into the treatment (personalized) 

group, the platform would serve them personalized rankings that are generated by the personalization 

algorithm. The inputs to the algorithm are the consumers’ clicks, add-to-carts, and purchases within a 

product category. The algorithm itself is a Deep Learning-based algorithm that learns the similarities 

26See Algorithms: How they can reduce competition and harm consumers 2021 (CMA) for more details. 
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Figure 4: Experiment Design 

Treatment Control 

Personalized Rankings Non-Personalized 
(Bestseller) Rankings 

between the co-clicked (co-purchased) products and outputs the set of personalized rankings (see 

Figure 5). 

If the consumers were randomized into the control group, the platform serves non-personalized 

bestseller rankings regardless of the type of chairs they saw previously (right-hand side of Figure 4). 

Figure 5: Personalization Algorithm 

Input Algorithm Output 
Browsing history Deep Learning Rankings 

Note that during their very frst session on the platform, consumers in the treatment and control 

group will see the same set of recommendations. The reason is that the platform does not yet have 

data to use for personalization.27 Thus, the results in this section should be treated as Intent-To-Treat 

(ITT) rather than standard Average Treatment Efects (ATE). 

We did randomization checks based on both consumer groups’ demographic data, as well as their 

historical search and purchase behavior. Table C5 shows that there are no signifcant diferences 

between consumers in treatment and control groups, which validates correct randomization in the 

experiment. 

27There is also a rule on the platform that prohibits changing rankings within the 30 minute interval during a session, 
not to confuse consumers. Therefore, the rankings do not change within a session. 
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4.1. Experimental changes in product rankings 

First, we illustrate the impact of the experiment on product rankings. In the personalized 

(treatment) condition, products that were predicted to be more relevant to the consumer were placed 

higher on the ranking pages. To validate the experiment, we take the top 50 most popular products 

in the dining chair category overall and show the distribution of their ranks in the experimental 

(personalized) condition. In the bestseller non-personalized condition, these products would have been 

shown at the top of the product ranking results. However, Figure 10 shows that in the personalized 

condition the median rank of the top 50 product is 74. Given that there are 48 products on each 

ranking page, this means that in the personalized condition 50% of the time a top product is shown 

on the second page. This makes sense because the platform typically flls the frst 72 positions (1.5 

pages of the ranking results) with the personalized results. Note that it is completely possible for the 

top products to be personalized in case there are consumers who click on these or similar products.28 

Figure 6: Rankings of Top 50 bestselling products in personalized condition 

Notes. This fgure shows the ranks of the Top 50 products when shown on 
personalized pages. Despite being most popular products, the median product 
is shown on position 74, on the second page of the ranking results. The reason is 
that other products that are more relevant to consumers’ individual tastes take 
higher positions in the ranking results. 

Meanwhile, smaller sellers jumped in the ranking results by a median of 4 pages or 241 positions, 

as illustrated in Figure 7. Thus, the experiment changed the rankings of the products as expected, 

which further validates the experiment.29 

To summarize, the experiment changed product rankings quite substantially, where bestseller 

28Appendix H describes the personalization algorithm in more detail. 
29Moreover, Figure D3 shows that the treatment intensity, i.e. the share of the personalized products on the 

ranking pages increases as the platform collects more and more data about a consumer. Note that while the platform 
tries to populate the frst 72 positions with personalized products, it may not always be feasible due to factors such as 
product unavailability or the algorithm fnding fewer than 72 relevant products. 
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Figure 7: Changes in ranking results in the treatment condition 

(a) ∆ ranking pages (b) ∆ product ranks 

Notes. This fgure shows the jump in the pages and overall ranks of less popular products as a result of personalization. 
Figure (A) shows that median product jumped four pages higher, and Figure (B) shows that the overall rank decreased 
by 241 positions. 

products were shown on the second page of the ranking results or even further. Meanwhile, less 

popular products gained the opportunity to be more prominent on the website. Next, we explore 

how these experimental changes afected consumers, sellers, and the platform. 

4.2. Effect of personalization on consumers and the platform 

In this subsection, we estimate the efects of the experimental changes in the rankings on consumer 

and the platform outcomes in the dining chairs category. Since there is experimental variation in the 

treatment assignment, we estimate the treatment efect by regressing the outcome variable for each 

consumer (yi) on the randomized treatment assignment (treatmenti) as follows 

yi = α + βtreatmenti + εi (1) 

where yi is the outcome variable of interest, such as clicks or revenue, treatmenti is the treatment 

indicator equal to 1 in case consumer i is randomized into the personalized ranking group, and 0 

otherwise. 

Table 4 shows that personalization does not afect the probability of clicking, but does increase the 

probability of adding to cart by 1.1%, the probability of basket page visit by 1.4% and the purchase 

(conversion) probability by 1.4% (Columns 1-4 in Table 4). Consumers in the personalized group 

bring more revenue (+2.1%) and more proft (+1.5%), which is partially driven by a larger number 

of purchase instances (+2.4%) (Columns 5-7). Table D6 in the Appendix shows the efects for the 

full experimental data, i.e., all 9 million consumers; and Table D8 shows the experimental results 

among consumers who had a browsing history before the experiment. The results are consistent 

across diferent samples. 

Personalization is clearly benefcial to the platform through higher revenue and proft. On 
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Table 4: Efect of personalization on consumer and platform outcomes 

(1) 
Clicks 

Logistic 

(2) (3) 
Add-to-cart Basket page 

(4) 
Converted 

(5) 
Log(Revenue) 

OLS 

(6) 
Purchases 

(7) 
Log(Proft) 

Personalized 0.002 
(0.012) 

0.011∗∗ 

(0.005) 
0.014∗∗∗ 

(0.005) 
0.014∗∗ 

(0.005) 
0.021∗∗∗ 

(0.008) 
0.024∗∗∗ 

(0.008) 
0.015∗∗ 

(0.006) 

Intercept 

Observations 

2.988∗∗∗ 

(0.008) 
635,267 

0.246∗∗∗ 

(0.004) 
635,267 

0.148∗∗∗ 

(0.004) 
635,267 

-0.870∗∗∗ 

(0.004) 
635,267 

1.947∗∗∗ 

(0.005) 
635,267 

1.095∗∗∗ 

(0.006) 
635,267 

– 
(0.004) 
635,267 

Notes. This table reports the output from the estimation of equation 1. Data is at the consumer-level. Columns 
(1)-(4) report the logistic specifcation and Columns (5)-(7) report the OLS specifcation results. Robust standard 
errors in parentheses. The intercept in proft Column (7) is hidden for data sensitivity reasons. Statistical signifcance: 
∗ ∗∗ ∗∗∗ p < 0.05, p < 0.01, p < 0.001. 

the consumer side, purchase metrics exhibit a positive trend, however it is not yet clear whether 

consumers beneft from personalization. One concern that regulators have is that personalization 

may drive consumers to purchase higher margin items. To test this hypothesis, we analyze consumers’ 

purchase outcomes. We estimate Equation 2 on the consumer-purchased product-level data. Table 5 

shows that purchasing consumers in the personalized group buy 0.5% higher priced items, and they 

buy more items (+0.9%) than the purchasing consumers in the non-personalized group. This leads 

to the platform earning 1.5% higher revenue from the purchasing consumers. However, contrary to 

the regulators’ concerns, we do not fnd signifcant diferences in the platform profts from purchasing 

consumers.30 These results suggest that while consumers in the personalized group purchase slightly 

more expensive products and drive revenue, personalization algorithm per se does not lead consumers 

to higher margin items. 

yij = α + βtreatmenti + εij (2) 

Table 5: Efect of personalization on consumer outcomes: purchase outcomes 

Purchase Outcomes 

Personalized group 

(1) 
log(price) 
0.005∗∗∗ 

(0.001) 

(2) 
log(quantity) 

0.009∗∗∗ 

(0.001) 

(3) 
log(revenue) 

0.015∗∗∗ 

(0.003) 

(4) 
log(proft) 

0.004 
(0.003) 

Intercept 

Observations 

6.022∗∗∗ 

(0.001) 
2,022,708 

2.075∗∗∗ 

(0.001) 
2,022,708 

7.343∗∗∗ 

(0.002) 
2,022,708 

– 
(0.002) 

2,022,708 

Notes. This table reports the output from the estimation of equation 2. Data is at 
the consumer-purchased product level. The intercept in Column (4) is hidden for 

∗ ∗∗ ∗∗∗data sensitivity reasons. Statistical signifcance: p < 0.05, p < 0.01, p < 0.001. 

Next, we explore the quality of the product matches between personalized and non-personalized 

groups. To proxy for the match quality, we use detailed data on post-purchase product returns and 

repeat visits. Note that consumers tend to repeat visit and to repeat purchase products in the dining 

30The proft intercept is hidden to adhere to the legal agreement with the platform and prevent the disclosure of 
their margins. 
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chairs category. We observe in the data that consumers purchase a set of 1-2 chairs and then repeat 

purchase after some time. Our hypothesis is that they test the chairs before purchasing the full set. 

We estimate the logit specifcation of Equation 1 to identify the probability of repeat purchases. The 

outcome variables yi are the indicator variables for whether the consumer repeat purchased 7, 30, 90, 

150, 365, or 500 days after the frst purchase. Columns (1)-(6) of Table 6 show the estimation results. 

We fnd that the repeat purchase probability is similar in the personalized and non-personalized 

groups 7 days after the frst purchase. However, 30 to 500 days after the frst purchase the repeat 

purchase probability increases by 2.2-3.9%. Table D7 shows the same regression results for the 

full set of consumers across all product categories in the experiment and confrms that the results 

are similar. The fact that consumers in the personalized group are more likely to repeat purchase a 

product within the same product category suggests that they are satisfed with the initial product 

match. 

Table 6: Efect of personalization on repeat visits and product returns (dining chair consumers) 

(1) 
7 days 

(2) 
30 days 

Repeat purchases 

(3) (4) 
90 days 150 days 

(5) 
365 days 

(6) 
500 days 

Returns 

(7) 
product returns 

Personalized 0.007 
(0.015) 

0.022∗ 

(0.012) 
0.025∗∗∗ 

(0.008) 
0.027∗∗ 

(0.011) 
0.023∗ 

(0.012) 
0.039∗∗∗ 

(0.015) 
0.003 

(0.006) 

Personalized× Personalized product -0.103∗∗∗ 

(0.022) 

Intercept 

Observations 

-1.663∗∗∗ 

(0.010) 
136,643 

-0.726∗∗∗ 

(0.008) 
136,623 

0.218∗∗∗ 

(0.006) 
268,058 

0.214∗∗∗ 

(0.008) 
136,585 

0.726∗∗∗ 

(0.008) 
136,568 

0.971∗∗∗ 

(0.011) 
90,480 

-2.727∗∗∗ 

(0.004) 
1,898,251 

Notes. This table shows the efects of personalization on repeat purchases and product return rates. Columns (1) - (6) are estimated 
using logit version of 1. Data are at the consumer level. Column (7) is the estimation of Equation 3. Data are at the consumer-purchased 
product level. Consumers in the personalized group might buy the item that was part of the organic rankings and wasn’t personalized to 
them and we control for that by interacting the treatment dummy with the indicator for whether the product was personalized. For 
statistical power, we’ve included all consumers who were shopping in dining chairs category and their visits to the same marketing 
category, i.e. dining chairs, chairs, Each column represents the set of people who purchased a dining chair and we check the probability 

∗ ∗∗ ∗∗∗they will purchased in 7, 30, 90 etc. days. Robust standard errors in parentheses. Signifcance levels: p < 0.05, p < 0.01, p < 0.001. 

To further investigate the quality of product matches, we show that consumers in the personalized 

group are 10% less likely to return the product post-purchase (Column 7 of Table 6). The specifcation 

we use is the logit form of the following equation: 

yij = α + β1treatmenti + β2treatmenti × personalized productj + εij (3) 

where yij is the dummy variable indicating whether consumer i returned purchased product j; 

treatmenti is the indicator for the treatment assignment of consumer i where treatmenti = 1 if 

the consumer is in the personalized group, and 0 otherwise; personalized productj is the indicator 

for whether consumer bought a product that was personalized to her. Recall that typically the 

frst 1-2 pages of product rankings feature personalized products, and the rest of the products are 
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non-personalized to consumers’ browsing history. Therefore, it is possible that consumers in the 

personalized group buy a product that was not personalized to them. We fnd that consumers who 

were in the personalized group and bought a product that was personalized to them were 10% less 

likely to return the purchased product (Column 7 of Table 6). The results are robust both in the 

dining chairs category and in the full sample of experimental consumers (see Table D7 ). 

Overall, the results above suggest that consumers beneft from personalization through better 

product matches, which we measure via higher repeat purchase probability and lower probability of 

returning a product. 

So far, we focused on consumers’ purchase outcomes, but the entire search process is important. 

Therefore, next we explore whether consumers in the personalized group (independent of purchase 

status) experience lower search costs than the consumers in the non-personalized group. We measure 

search costs by exploring consumers’ fltering behavior and the time they spent searching. Estimating 

Equation 1 with the search-related outcome variables, we fnd that consumers in the personalized 

group are 1.9% less likely to flter a ranking page, and conditional on fltering they apply marginally 

fewer flters. Moreover, we fnd that consumers in the personalized group spend 3.6% fewer days 

searching for a product compared to the consumers in the non-personalized group. These results 

suggest that consumers in the personalized condition incur less search costs on the platform. 

Table 7: Efect of personalization on search costs 

Logistic 

(1) 
Filtered (0-1) 

(2) 
Log(# of flters applied) 

OLS 

(3) 
Position of the flter 

(4) 
Log(days till purchase) 

Personalized -0.019∗∗∗ 

(0.007) 
-0.007∗ 

(0.004) 
-0.021∗∗ 

(0.010) 
-0.036∗ 

(0.020) 

Intercept 

Observations 

-1.716∗∗∗ 

(0.005) 
635,267 

1.435∗∗∗ 

(0.002) 
140,574 

2.768∗∗∗ 

(0.007) 
179,628 

2.409∗∗∗ 

(0.014) 
43,110 

Notes. This table shows the output from the estimation of equation 1. Robust standard errors in parentheses. 
∗ ∗∗ ∗∗∗Signifcance levels: p < 0.05, p < 0.01, p < 0.001. 

The takeaway from this subsection is that both consumers and the platform beneft from 

personalization. Moreover, the increase in the platform’s proft is driven by the repeat purchase 

behavior of consumers rather than diversion towards high margin products. These results suggest 

that the platform and consumers’ incentives are aligned in the sense that better consumer-product 

matches lead to better outcomes for both consumers and the platform. 

4.3. Effects of personalization on product sellers 

Next, we explore the efect of personalization on product sellers. To understand how 

personalization afects diferent sellers’ products, we proceed in several steps. 
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Small-revenue and less experienced sellers. First, we use pre-experiment data from January 

2018 to January 2020 to calculate each product’s historical popularity, i.e., revenue earned and 

quantity sold. We also ranked products by their historical revenue within a category of products, 

where rank 1 means that the product is a best-seller, rank 2 means the product is the second best, 

etc. Next, we construct a consumer-product-seller level dataset to investigate whether consumers in 

the personalized group buy more or less popular products. Table 8 shows the results of estimation of 

Equation 2. We fnd that consumers in the personalized group purchase products that have 6% less 

historical scaled revenue (-$251 with the intercept of $4,011), have 5% less quantity sold (2.4 with 

the intercept of 49.4), and are 94 positions ranked lower (less popular) compared to the consumers 

in the non-personalized condition. These results suggest that personalization leads consumers to 

purchase less popular products. 

Table 8: Efect of personalization on sellers 

Historical product 

(1) (2) (3) 
Revenue Quantity Relative rank 

Personalized -251.784∗∗∗ -2.406∗∗∗ 94.239∗∗∗ 

(34.734) (0.506) (26.417) 

Intercept 4011.621∗∗∗ 49.388∗∗∗ 1.3e+04∗∗∗ 

(25.001) (0.364) (19.014) 
Class FE Yes Yes Yes 
Week FE Yes Yes Yes 
Observations 429,417 429,417 429,417 

Notes. This table shows the output from the estimation of 
equation 2. Data is at the consumer-purchased product level. 

∗Robust standard errors in parentheses. Signifcance levels: p < 
∗∗ ∗∗∗0.05, p < 0.01, p < 0.001. 

Next, we focus on the below-median historical revenue sellers and investigate the importance of 

personalization for them. Table 9 shows that smaller sellers get 20% higher revenue (+$79 with the 

intercept of $395) in the personalized condition, and they are 15% more likely to be shown on the 

frst 2 pages of the product ranking results. 

Table 9: Importance of personalization for below median-revenue sellers 

OLS Logit 

Personalized 

(1) 
Below median-revenue seller Revenue 

79.201∗∗∗ 

(8.232) 

(2) 
First two pages 

0.147∗∗∗ 

(0.011) 

Intercept 

Observations 

395.966∗∗∗ 

(5.469) 
2,415,416 

6.221∗∗∗ 

(0.008) 
16,612,314 

Notes. This table shows the output from the estimation of equation 1. In Column 
(1) data is at the seller level, in column (2) the data is at the seller-product level. 

∗ ∗∗Robust standard errors in parentheses. Signifcance levels: p < 0.05, p < 
∗∗∗0.01, p < 0.001. 

Thus, personalization leads consumers to purchase smaller sellers’ products, and the latter get 

signifcant part of their revenue from personalized impressions, especially since they are placed more 
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prominently on the website under personalization. 

Next, we focused on the impact of personalization based on sellers’ experience on the platform. We 

fnd that less experienced sellers beneft more from personalization, whereby their revenue increases 

by 3.2-4.1% in the personalized condition compared to non-personalized (bestseller) condition. Thus, 

personalization benefts both smaller revenue and less experienced sellers by attracting consumer 

demand to them. It is important to recognize that in personalized condition the type of seller is not 

crucial as long as the product is relevant to the consumer, which is why both large and small sellers 

are treated similarly. 

Niche sellers. Traditional view on personalization is based on Chris Andersen’s long-tail literature, 

which suggests that personalization should beneft long-tail products. To empirically test that, 

we train the image recognition Deep Learning model to, frst, efciently identify niche products 

versus mass products. Next, we estimate the impact of personalization on product with diferent 

nicheness-level. 

The embedding model takes as an input more than one million product images and outputs a 

512 × 1 vector representation of an image (embedding), so that similar images are close in this vector 

space and dissimilar images are farther away. Figure 8 illustrates the idea. A well-trained model 

should output vectors such that the cosine similarity between similar white chairs is high, e.g., 0.94, 

and the cosine similarity between dissimilar white and blue chairs is low (e.g., 0.45). Appendix G 

provides more details on the algorithm training. 

Figure 8: Illustration of the image embedding process 

cosine similarity = 0.94 

0.6 0.2 . . . 
0.3 0.5 . . . 
0.4 0.7 . . . 

  

  

Embedding Model 

512 × 1 vectors 

cosine similarity = 0.45 

Notes. This fgure illustrates how the image embedding algorithm works. Image 
embedding is a compact representation that captures the essential information 
about the image. Each image is converted into a numerical vector of 512 × 1. This 
procedure allows us to calculate pairwise cosine similarities between vectors. 

We use the embedding vectors to calculate pairwise similarities between a product and all the 

remaining products within a category. High cosine similarity corresponds to mass-market products, 
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that are very similar among each other. Low cosine similarity products are the niche products that 

are dissimilar from the rest. Figure below shows a randomly sampled examples of the results. Panel 

A shows a product that has mean cosine similarity of 0.07 to the other dining chairs. This means 

that the chair is a very niche one. Panel B shows a product that has a cosine similarity of 0.2, which 

means that it is a mid-niche product. Panel C exhibits a mass-market product that has a cosine 

similarity of 0.8, that is, it is very similar to all the other chairs in the dining char category. 

Figure 9: Examples of various-niche products 

(a) Cosine similarity = 0.07 (b) Cosine similarity = 0.2 

(c) Cosine similarity = 0.8 

To understand the impact of personalization on niche vs mass-market product, we split all 

products into fve quintiles and constructed a product-year-week panel to understand how a product’s 

revenue changes after being personalized across diferent quintiles. 

log(revenue)jt = α + β1personalizedjt + β2cosine quintilej + β3personalizedjt × cosine quintilej + εjt 

(4) 

The results of the regression 4 (10) suggest that contrary to the traditional view, the type of 

products that beneft the most from being personalized are the mid-niche sellers (quintile 3, see 

Figure 10). 

The rationale is that consumers who prefer very niche (quintile 1) products can fnd them on 

their own because they use specifc keywords. Meanwhile, mid-niche products are the ones that the 

platform can help consumers fnd. Thus, we fnd that personalization benefts smaller historical 

revenue sellers and mid-niche product sellers, because they are more likely to gain prominence on the 

website and are more relevant to the consumers who view them. 

To summarize this section, experimental results suggest that platform, consumers and smaller 

sellers beneft from personalization. These results serve as reduced-form measures of welfare gains. 

In the next section, we develop a structural model to evaluate how privacy restrictions afect the 

benefts of personalization. 
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Table 10: Heterogeneous efect of personalization on sellers by nicheness 

(1) 
Log(revenue) 

Personalized 0.148∗∗∗ 

(0.007) 

Cosine Q2 0.058∗∗∗ 

(0.008) 

Cosine Q3 0.062∗∗∗ 

(0.008) 

Cosine Q4 0.030∗∗∗ 

(0.008) 

Cosine Q5 0.078∗∗∗ 

(0.008) 

Personalized× Cosine Q2 0.002 
(0.009) 

Personalized× Cosine Q3 0.022∗∗ 

(0.009) 

Personalized× Cosine Q4 0.014 
(0.009) 

Personalized× Cosine Q5 0.008 
(0.009) 

Intercept 0.362∗∗∗ 

(0.005) 
Observations 1,835,424 

Notes. This table shows the output from 
the estimation of equation 1. In Column (1) 
data is at the seller-product. Robust standard 

∗ errors in parentheses. Signifcance levels: p < 
∗∗ ∗∗∗0.05, p < 0.01, p < 0.001. 

Figure 10: Distribution of mean cosine similarities 

Notes. This fgure shows the distribution of mean cosine 
similarities for each product in dining chairs category. We 
take ffty thousand products that historically existed in the 
category and calculate pairwise cosine similarities between 
them. We then calculate mean similarity by each product 
and plot the resulting distribution. The black lines show 
that mid-niche products beneft more from personalization. 
The result is based on the regression Table 10 . 
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5. Model 

In the previous section, we established that personalization algorithms can beneft consumers, 

smaller sellers, and the platform. Next, we want to quantify the impact of privacy restrictions 

on personalization benefts, and understand any heterogeneous efects on diferent consumers and 

sellers. To achieve that, frst, we construct a counterfactual world in which the platform starts 

using lower quality (fragmented) data as a result of privacy restrictions. We then re-train Wayfair’s 

personalization algorithm using lower quality data. For example, Chrome 2024 policy will block the 

ability of the platform to recognize consumers who arrived through display advertising channel. We 

take Wayfair’s data and act as if consumers who arrived from the display advertising channel were 

not recognized by the platform, which is why the platform could not connect consumer sessions and 

thought that the consumer arriving from display advertising is a completely new consumer. We 

input fragmented data to the existing algorithm, which outputs counterfactual recommendations 

that would have been generated had the Chrome restriction been in place. The outline is illustrated 

in Figure 11. 

Next, we need to simulate how consumers will search and purchase on the website under the 

counterfactual recommendations. We develop a multi-session consumer search model that will 

allow us to estimate the underlying consumer preferences and search costs. We can then fx these 

parameters and simulate the changes in consumer choices under the new set of product rankings. 

Finally, simulations will help us get to our main outcomes of interest: changes in consumer choices, 

consumer welfare, seller revenue, and platform revenue and proft. 

Figure 11: Overview of the counterfactual analysis 

Input Algorithm Output 
Browsing history Deep Learning Rankings 

Multi-Session Search Behavior 

Click, Scroll, or Leave 

Purchase Behavior 

One might wonder why we focus on consumer behavior and do not model sellers’ and platforms’ 

decisions. We do not have to model platforms’ actions because we observe the personalization 

algorithm they use and re-train their algorithm directly. It is hard for the platforms to change the 

algorithms in a fast manner, so we operate under the assumption that the platforms’ algorithm does 

not change in the counterfactuals. In the last part of the paper, we relax that assumption. 

Next, we do not model sellers’ response to the privacy restrictions and to the changes in the 

personalization algorithms. The reason is that sellers observe aggregate performance of their products 
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on the platform and do not see whether trafc is driven by personalization. Thus, they will not 

be able to distinguish between the mechanisms that could drive trafc changes. Moreover, they 

have limited knowledge about the details of the algorithms. Therefore, we only focus on consumer 

behavior in the model. Next, we show the empirical facts that motivated the model and formalize 

the model. 

5.1. Empirical Facts to motivate the model 

This section reports empirical patterns in the data that motivate ensuing model. Consumers’ 

search behavior can be described by a sequence of decisions and we organize the discussion to 

capture the progression of consumer search and to highlight the decisions that are important for the 

counterfactual analysis. 

Viewing. When consumers reach a product category page, they do not see the entire ranking 

results. They usually view only top part of the results and have to scroll down to view additional 

products (Figures 12 and 13). Formally, this means consumers have limited awareness of products 

and have to incur additional costs to view the remaining products.31 We observe that there are 

signifcant diferences in viewing behavior between consumers who see personalized results versus 

non-personalized results. Table 11 shows that consumers in personalized group viewed four products 

less within a page and viewed 1.5 pages less than consumers in the non-personalized group. Overall, 

personalized group consumers viewed 83 products less and purchased products placed higher in the 

ranking results. This highlights that personalized rankings change the incentives of consumers to 

scroll and view additional products. When we change the rankings in the counterfactuals we expect 

that consumers’ viewing incentives will change, and it is important to capture that in the model. 

Figure 12: Top view of the ranking page 
Figure 13: View after a scroll 

Chair 1 ($200) Chair 2 ($230) 

Chair 1 ($200) Chair 2 ($230)⋆⋆⋆⋆⋆⋆ (472) ⋆⋆⋆⋆⋆⋆ (976) 

⋆⋆⋆⋆⋆ (472) ⋆⋆⋆⋆⋆ (976) 

Chair 3 ($340) Chair 4 ($400) 

⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆⋆ ⋆ 

Learning. We observe that both in the personalized and non-personalized groups consumers exhibit 

31Traditional search models usually assume full awareness, which means that consumers observe the entire set of 
products that are available on the website. Two recent papers that restrain from this assumption are Greminger (2022) 
and Gibbard (2022). 
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Table 11: Viewing patterns 

Search patterns Purchase 

Personalized 

(1) 
In-view (within a page) 

-4.163∗∗∗ 

(0.102) 

(2) 
Search page 

-1.587∗∗∗ 

(0.047) 

(3) 
In-view (full rank) 

-83.752∗∗∗ 

(2.200) 

(4) 
Rank (Purchased product) 

-25.133∗∗∗ 

(4.489) 

Intercept 

Observations 
Clusters 

18.679∗∗∗ 

(0.045) 
2,536,098 
635,267 

2.830∗∗∗ 

(0.046) 
2,536,098 
635,267 

109.314∗∗∗ 

(2.164) 
2,536,098 
635,267 

49.232∗∗∗ 

(1.861) 
5,659 
4,699 

Notes. This table reports the output from the estimation of equation 2. Data is at the consumer-session level and 
∗ ∗∗tracks the number of products and pages that were in view for a consumer. Signifcance levels: p < 0.05, p < 

∗∗∗0.01, p < 0.001. 

learning behavior similar to the one described in Bronnenberg, Kim and Mela (2016). After clicking 

on a product and observing its utility, consumers seem to update their beliefs about the remaining 

products that are similar to the clicked ones. We observe in the data that consumers gradually 

converge in the attribute space to the product they eventually purchase (Figure 14). We also observe 

in the data that consumers tend to stop searching for products that are similar to the ones that they 

previously did not like ( Table E19 ). This phenomenon is called spatial learning in the literature 

(Hodgson and Lewis, 2022). We think that learning is important to account for because if consumers 

learn fast they can search in a more efcient way even under distorted personalized rankings. If we 

do not account for learning, we would overestimate the negative efects of privacy restrictions. 

Figure 14: Convergence patterns during consumer search 

(a) log(price) (b) chair width 

Notes. This fgure shows that consumers gradually converge towards a chosen product during search. The x-axis shows 
consumer’s search decile (progression), and y-axis shows the absolute deviation of the searched product attribute from 
the chosen (purchased) product’s attribute. 

Multi-session search. As was mentioned in Section 3, dining chairs are big-ticket products that 

require some consideration before consumers purchase. Since rankings change at each re-visit, it is 

crucial that we account for the multi-session aspect of search. 

Recommendation widgets. Recommendation widgets are additional product recommendations 

that are featured on the product pages. Technically, we could ignore them because they are not 
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personalized and do not use individual-level data. However, consumers extensively click on the 

products in the widgets. Thus, we need to consider the widgets to get a complete view of consumers’ 

search paths. Moreover, the products in the widgets are similar to the one consumers clicked on, 

which is why the widgets could be viewed as personalized to consumers’ current browsing history. We 

ran a randomized experiment with the platform where we randomly removed recommendation widgets 

from the product pages. We use this experiment together with the above described experiment to 

estimate model parameters. 

Refnement actions. Table 7 showed that consumers in the personalized group tend to flter less, 

which could indicate that their search costs are lower. However, we do not model refnement actions 

because we do not see any experimental evidence to support that fltering afects click, add-to-cart or 

purchase behavior. Table D9 shows that consumers who flter are more active on the website, but 

there are no diferences in the outcomes between personalized and non-personalized group consumers 

who flter. Moreover, we do not see signifcant diferences in the types of flters applied in each group 

( Figure E7 ). Thus, we decided not to model refnement actions since they do not seem to change 

the outcomes under personalized rankings.32 

Inter-session actions. We decided not to model consumers’ inter-session behavior for several 

reasons. First, we do not have data on how consumers search outside Wayfair.33 Second, we do not 

see any diferences in the distribution of trafc sources that consumers in the personalized versus 

non-personalized groups use to return to the platform. We checked both the channel types (e.g., 

direct trafc, email) and the referral URLs, and did not see any diferences (see Figure E5 and 

Figure E6 ). Thus, our hypothesis is that personalized rankings afect consumers’ behavior within a 

website visit but do not afect the way they search on other platforms, websites. 

Thus, the main components in our model are viewing, clicking, learning, and purchasing patterns 

of consumers. We take the spatial learning model proposed in Hodgson and Lewis (2022) as a baseline 

and extend their model by allowing for consumers’ limited awareness and multi-session aspect of 

search, which is crucial for our counterfactual analysis. Next, we formalize the model. 

5.2. Set-up 

Consumer i arrives to the website at time t = 1 and searches for a product on the ranking 

pages. There are J products on the website. Consumer has limited awareness, which means she 

observes only part of the products that are featured on the ranking pages. For instance, due to 

screen size limitations, consumer may view only several products, and she has to scroll down to view 

additional products. We call the set of products that consumer has viewed at time t her awareness 

32Moreover, it is hard to solve the model with refnement actions. For an example paper, see Chen and Yao (2017).
33We attempted to match our data with Comscore, however, due to the incompleteness of Comscore, did not get a 

good overlap. 
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set At. For each product in her awareness set, consumer observes a vector of product characteristics: 

Xj = [pricej , ratingj , #ratingsj , imagej ], j ∈ At. These characteristics are observable directly on the 

ranking pages. We represent images in two-dimensional space using the image embeddings trained 

using Siamese Neural Network (Appendix G) and UMAP. 

Consumer’s information set at the beginning of search is as follows. She knows (i) her preferences 

towards observable product characteristics, (ii) her awareness set At, (iii) the observable characteristics 

Xj of viewed products, (iv) the value of the outside option, and (v) she has rational beliefs over the 

distribution of the observable characteristics of the products outside her awareness set. Given this 

information set, consumer chooses between leaving, viewing and clicking. 

Leaving the website is possible at any point in case consumer has sufciently low beliefs over the 

product payofs. If consumer decides to stay she chooses between viewing and clicking. 

Viewing additional products is costly. Consumer incurs a scrolling cost of cs to expand her 

awareness set: At+1 = At ∪ Rt, where At is the initial awareness set, Rt is the set of products viewed 

after scrolling, and At+1 is the resulting awareness set.34 

Clicking on a product reveals additional product characteristics, such as product reviews, but 

is costly too. Consumer incurs a clicking cost of cj and can only click on a product she viewed (is 

aware of). Clicking on product j reveals the true utility of the product. We follow the specifcation 

proposed by Hodgson and Lewis (2022) and model the utility of clicking on product j as: 

uij = mi(Xj ) + ξj + εij (5) 

where mi(Xj ) : Xj → R is the function that maps observable product characteristics Xj to the 

payofs, ξj is the unobserved product quality common to all consumers and drawn iid from N (0, σj 
2), 

and εij is the idiosyncratic taste shock drawn iid across consumers and products from N (0, σε 
2). 

There are several important components of this specifcation that are worth mentioning. First, 

consumer forms prior beliefs over product payofs on the ranking pages (before clicking). In particular, 

given products’ observable characteristics, consumer i forms a prior belief over the mean payof 

µi(Xj ) and the prior uncertainty κi(Xj , Xj ) of product j ∈ At. This part is captured by mi(Xj ) 

in the utility specifcation 5. In particular, we assume that mi(X)35 is a function sampled from 

Gaussian Process with mean µi(X)36 and covariance κ(X, X ′ ).37,38 Second, to reveal other a-priori 

unknown product characteristics, consumer clicks on a product and reveals ξj part of the utility. 

Additionally, there is an idiosyncratic taste shock to the utility εij , which is revealed after clicking 

on the product page. Together all these components constitute the true utility uij . 
34After scrolling consumer observes the same set of characteristics for each newly viewed product, i.e. price, etc. 
35 mi(X) is the vector J × 1, where each element corresponds to each product j, i.e., mi(Xj ) ∈ mi(X). 
36 µi(X) is the vector J × 1, where each element corresponds to each product j, i.e., µi(Xj ) ∈ µi(X). 
37κ(X, X ′ ) is the J × J variance-covariance matrix of products’ payofs. 
38We describe this specifcation in more detail in the next subsection. 
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Clicking on a product helps the consumer evaluate the correctness of her prior beliefs. Suppose 

consumer had high prior belief µi(Xj ) regarding product j, but the actual utility of the product 

appeared to be low. This is illustrated in Figure 15. The teal line is the payof function mi(X) 

sampled from Gaussian Process with consumer’s prior mean and variance-covariance beliefs. Suppose 

consumer thought that the payof of the solid wood chair is high, so she clicked on it. The true utility 

uij (red cross) turned out to be low. For instance, reading reviews revealed that the product is not 

good. As a result, consumer updates her posterior beliefs given the new information. 

Figure 15: Illustration of consumer learning process 

mi(X) 

Dining
chair 

prior mi(X) 

updated mi(X) 

× 

×actual utility 

Solid Wood 
$239.99 

Thus, clicking (i) reveals additional product characteristics, (ii) reveals product utility, and (iii) 

allows consumer to update her beliefs. Moreover, on the product pages, consumer views additional 

product recommendations that are similar to the clicked product. This automatically expands 

consumers’ awareness set at no cost. Thus, after clicking product j, consumer’s awareness set 

becomes At+1 = At ∪ Rjt where Rjt is the set of products that are recommended on product j at 

39,40time t. 

After clicking a product, consumer can either purchase the clicked product, go back to the ranking 

page and click on one of the products she is aware of, view additional products, or leave the website. 

Next, we describe how consumer decides which action to take. 

5.3. Consumer’s decision problem 

Technically, one would have to write and solve a full dynamic Bellman equation to get consumer’s 

optimal search path. However, with thousands of consumers and thousands of products it is not 

39For simplicity, we assume that while consumers have rational expectations over the remainder of the ranking pages, 
consumers do not form beliefs over the recommendation widget. The rationale is that the platform shows most similar 
products which means the index of the products in the recommendation widget coincide with the anchor product in 
expectation.

40Consumer observes the same set of characteristics, i.e. price, ratings, numbers of ratings and images for the 
products on the recommendation widgets. 
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feasible to do backward induction. Instead of solving the problem by backward induction, we use 

a heuristic near-optimal approximation to the solution given the descriptive evidence in the data. 

To decide whether and what to search, we assume that consumer follows an index strategy. When 

consumer lands on a ranking page, we assume that she constructs a utility index for the products in 

her awareness set Ait 

zijt = µijt + ηκijt − cijt, j ∈ Ait (6) 

where zijt is the utility index of consumer i for product j at time t, µijt = µit(Xj ) is consumer i’s 

prior mean payof of product j at time t, κijt = κit(Xj , Xj ) is the prior uncertainty about the j’s 

payof, cijt is the cost of clicking product j at time t.41 If consumer decides to click on a product in 

her awareness set, she clicks on a product with highest index: j∗ = arg maxj∈Ait 
zijt. 

This index policy is similar to the Upper-Confdence Bound algorithm widely used in multi-armed 

bandit literature. We prove the near-optimality of the algorithm in our setting in Appendix B. The 

index policy captures that consumer has higher index for products with higher prior mean payof 

(µ), but may also explore products with higher uncertainty.42 This search behavior aligns with the 

standard exploration-exploitation tradeof at the core of bandit literature. 

Note that consumer may choose to view additional products before clicking. Consumer does 

not observe characteristics of the products outside her awareness set: J/At. However, Assumption 

1 states that consumer has rational expectations over products outside her awareness set and she 

knows the correct distribution from which the observable characteristics are sampled. 

Assumption 1 (Rational expectations). Consumers do not know the full set of products available 

on the platform, i.e., they have limited awareness. However, we assume that they know the correct 

distribution of all the products that are not in their awareness set. 

Therefore, consumer can construct an expected utility index summarizing the expected maximum 

utility that she believes she can fnd outside her awareness set. Formally, consumer constructs: 

E[max(zijt) − cs(rit)], j ∈ J/Ait (7) 

where expectation is taken with respect to the correct distribution of the observable characteristics 

of the products outside the awareness set. Two features are worth mentioning. First, consumer 

has beliefs over the maximum utility index she gets from clicking one of the products outside her 

awareness set. The net utility is calculated in the same way as in Equation 6 and already includes the 

clicking cost. Second, consumer incurs additional scrolling cost of cs(rit) to view products. Similar to 

Greminger (2022), we model the scrolling cost as a function of the position in the rankings reached so 

41We abbreviated the µijt, κit(Xj , Xj ) for simplicity. 
42It is an empirical question whether consumer likes exploring uncertain products (η > 0) or dislikes it (η < 0) or is 

completely indiferent (η = 0). 
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far, rit. This means that scrolling costs are allowed to change depending on the number of products 

consumer viewed so far. 

Consumer decides to view the products instead of clicking if the expected maximum utility 

index from viewing products outside awareness set is higher than the maximum utility index in the 

awareness set 

E[ max (zijt) − cs(rit)] > max zijt (8)
j∈J/Ait j∈Ait 

Recall that the full discrete choice problem that the consumer solves is choosing between (i) 

leaving, (ii) purchasing clicked item, (iii) viewing and (iv) clicking. Formally, at time t, consumer 

chooses: 

max{ u0 = 0 , ûi , maxj∈Ait zijt, E[ max zijt − cs(rit)]} (9)
j∈J/At 

outside option best utility choose highest 
↓ observed so far index product view more

products Leave ↓ ↓Purchase ↓Click View 

5.4. Belief updating 

At each point in time, consumer keeps track of the following state variables:43 (i) current mean 

payofs µt(X), (ii) current covariance matrix κt(X, X ′ ), (iii) best product observed so far ĵ, (iv) 

utility of the best product observed so far û, (v) awareness set at the beginning of time t, At, and 

(vi) the set of products that she hasn’t viewed yet J/At, (vii) the set of products she hasn’t clicked 

on yet. We explain the transition of the mean payofs and the covariance function, which are the 

moments of the Gaussian Process function m(X) from which the product payof function is drawn. 

After each click consumer observes the utility of product j, uj , and updates her beliefs about all 

the remaining J − 1 products. Consistent with the Gaussian process specifcation, posterior mean 

utilities on the remaining J − 1 products are updated as follows: 

κ(X−j , Xj ) 
µ ′ (X−j|j ) = µ(X−j ) + (uj − µ(Xj )) (10)

κ(Xj , Xj ) + σ2 + σ2 
ξ ε 

posterior means prior means deviation of observed 
weights 

utility from the prior 

where µ ′ (X−j|j ) is the (J − 1) × 1 vector of posterior means on the yet unclicked J − 1 products; 

µ(X−j ) is the (J − 1) × 1 vector of prior means on these products; κ(X−j , Xj ) is the covariance 

between the payofs of products −j and j; κ(Xj , Xj ) is the variance of the payof of product j; σ2 
ξ 

and σ2 are the uncertainties in the distribution of ξj and εj , respectively. Intuitively, the posterior ε 

mean payof of a product -j is its prior mean payof plus a weighted deviation of the actual observed 

utility from the prior mean of j, (uj − µ(Xj )). Weights are directly proportional to prior covariance 

between j and -j. If κ(X−j , Xj ) = 0, i.e. the clicked product j and some other product −j are 

43We drop the i subscripts for convenience 
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unrelated, then the posterior on -j is not updated at all. If κ(X−j , Xj ) is high then the posteriors 

will be updated more for -j. In the example on Figure 15, one could argue that receiving low utility 

on wooden chair may downgrade consumers’ beliefs about other wooden chairs but does not change 

consumers’ beliefs about leather chairs. 

Posterior covariances are updated as follows: 

total uncertainty 
about product j payof 

κ ′−j|j = κ−j|j − κ−j,j (κj,j + σξ 
2 + σε 

2) −1κT 
−j,j (11) 

posterior prior reduction in uncertainty 
covariance matrix covariance matrix 

where κ ′−j|j is the (J − 1) × (J − 1) posterior covariance matrix, κ−j|j is the (J − 1) × (J − 1) prior 

covariance matrix. The intuition behind Equation 11 is that the posterior uncertainty about product 

relationships decreases by the term κ−j,j (κj,j + σξ 
2 + σε 

2)−1κ− 
T

j,j , which is positive and increasing 

in the prior covariance between products j and -j. If products are not related at all, then there is 

no decrease in the uncertainty of product -j’s payof. If products have high prior covariance, the 

uncertainty is going to decrease because consumer revealed the true utility of a similar product j. 

We want to emphasize the role of these updating rules in consumer’s decision problem described 

in the previous subsection. At each time t, consumer uses the current mean payof and covariance 

beliefs when constructing the utility index: 

zijt = µijt + ηκijt − cijt, j ∈ Ait (12) 

This utility index is used both for in the clicking and the viewing decisions. After every click, 

consumer updates her beliefs and her utility indices are updated accordingly. 

Assumptions. In the model, we make the following main assumptions. First, we assume that it is 

costless for the consumer to navigate back to the ranking page from the product page. Second, we 

assume that consumers have perfect recall within and across sessions. Thus, consumers remember 

and keep track of all the products they have viewed previously. Third, we assume that consumer 

do not forget any information they obtained across sessions:44 this allows us to model multi-session 

search via propagating posteriors from the previous session as priors to the next session. 

5.5. Model parametrization 

In this part, we explain how we estimate the model using detailed clickstream and pixel-level 

data. Recall that the utility of consumer i from purchasing product j is given by 

44A more involved model could use power prior that allows for a forgetting factor. See Ibrahim, Chen, Gwon and 
Chen (2015). Alternatively, one could incorporate the forgetting specifcation from Mehta, Rajiv and Srinivasan (2004). 
We do not do this for computational reasons. 
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uij = mi(Xj ) + ξj + εij (13) 

where mi(Xj ) is drawn from a Gaussian Process with prior mean payof µi(X) and κi(X, X ′ ), 

ξj ∼ N (0, σ2) and εij ∼ N (0, σε 
2). We further parametrize the prior mean and covariance functions ξ 

as follows. Prior mean function over product payofs is a linear function of observable product 

characteristics: 

µ(X) = α + Xβi (14) 

where X is a vector of observable product characteristics, βi are consumer preferences over observable 

characteristics. Similar to Berry, Levinsohn and Pakes (1995), we allow for consumer heterogeneity 

through random coefcients such as βi ∼ N (β, Ω): β is the mean preferences and Ω is the variance 

matrix. 

To get positive-defnite variance-covariance matrix, one of the common specifcations in Gaussian 

process is to parametrize the prior κ matrix as a squared exponential kernel: 

  

κ(Xj , Xk) = exp − 
a 

(Xja − Xka)
2  

ρa 
(15) 

where Xja − Xka indicates the diference between the value of attribute a = 

{price, rating, #ratings, image} for products j and k, ρa is the learning parameter along 

the dimension of attribute a. This specifcation implies that the covariance between products 

characterized by the observable vectors Xj and Xk depends on the sum of the distance between 

these vectors along each attribute scaled by the learning rate ρ. For example, if all ρa = 0 then the 

covariance between products j and k is zero, i.e., they are unrelated. However, if ρa ̸= 0, and the 

distance between attributes Xja − Xka is low then the product payofs are highly related. 

To simplify the estimation procedure, we assume that conditional on viewing the product, 

clicking cost is constant c0 and there is a logit error term ψijt, which accommodates any potential 

idiosyncracies in clicking costs across consumers, products and time. 

cijt = c0 + ψijt (16) 

T ype1EV 

If consumer decides to view additional products, the scrolling cost at time t is specifed as: 

cs(rt) = cs · log(rt) (17) 

where cs is the constant part, and rt is the product rank reached so far at time t. 
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5.6. Estimation 

Parameters to be estimated. The main parameters to be estimated are preference parameters in 

the prior mean function, α, β and Ω; learning rates ρa; baseline clicking cost c0 and scrolling cost cs; 

the exploration parameter η in the utility index function; product fxed efects ξj ; and the variances 

σξ 
2, σ2 

ε . 

In the clickstream data, for each consumer at each point in time we observe the ordered list of 

products, i.e., product rankings that are served to the consumer. We also observe the vector Xj for 

each product. Pixel-level data tells us which products were viewed by a consumer at each point in 

time. Thus, for each consumer at each point in time we observe (i) the awareness set at time t, At, 

(ii) products that she has not viewed yet J/At, (iii) products that she has not clicked yet. 

Given initial parameter values, for consumer i we can draw βi ∼ N (β, Ω) and calculate prior 

mean payofs and variance-covariance functions as in Equations 14 and 15. Next, given clicking and 

scrolling cost consumer constructs utility indices in Equations 6 and 7. In the data, we observe 

whether consumer decides to click or to view the product. Upon clicking, consumer reveals product’s 

utility. We draw the payof function mi(X) ∼ GP (µi(X), κ(X, X ′ )). Given the initial σξ, σε, we 

can construct the utility as in Equation 13. After each click, we update consumer’s posterior beliefs 

according to Equations 10 and 11. Next, we observe whether consumer decided to click further, view 

additional products, leave, or purchase the clicked product. 

To estimate the model, we construct the likelihood function of the observed search paths and 

purchased options. Given the assumption of logit error terms on the clicking costs (Equation 16), 

the probability that the consumer chooses to search product j conditional on being in state S is 

exp(E[max(û, uj )|S ] − c0)
P (jit|S) = (18) 

exp(û) + l∈J exp(E[max(û, ul)|S ] − c0) 

where û is the best utility searched so far. This structure nicely follows because we assumed logit 

cost error terms. Had we observed the entire state space for each consumer including the drawn 

utility payofs, writing the likelihood function would be straightforward: the likelihood of consumer i 

searching for Ti periods would be: 

Ti⎧ 
Li({jit}T

t= 
i 

0|{S}
T
t= 

i 
0, θ) = Pi(jit|STi ) (19) 

t=0 

However, since we do not observe the drawn utilities, we have to integrate them out. Recall that 

due to the Gaussian structure, the distribution of the drawn utilities is G(ui) = N (α + Xj βi + ξj , Σi), 

where diagonal elements of Σi are κ(Xj , Xj ) + σε 
2 + σ2 and of-diagonal elements are κ(Xj , Xj ′ ).ξ 

Given that in addition to the utility draws we have to integrate out the random coefcients (F (βi)), 
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the likelihood function is as follows: 

⎫ ⎫ 
Li({jit}T

t= 
i 

0, ĵi|θ) = Li({jit}T
t= 

i 
0, ĵi|{St}T

t= 
i 

0, θ)dG(ui)dF (βi) (20) 

During the estimation, we maximize the products of the individual likelihood functions in Equation 

20 across all consumers. Due to the size of the data and potential incidental parameters problem 

when estimating large number of product fxed efects, we use Batch Stochastic Gradient Descent 

algorithm (Keskar et al., 2016) that samples consumers in batches of 500-1500 and minimizes the 

negative likelihood function. 

5.7. Identification 

Prior mean and variance parameters. The probability that each product is searched frst 

identifes the prior mean parameters, β and α, and the total variance of prior beliefs. To explain 

identifcation of the variance of random coefcients, we use standard argument for the discrete 

choice model identifcation (Keane, 1997). If we observe more variation in the attributes of the 

searched products across individuals than within individual search paths, this would indicate higher 

heterogeneity in random coefcients βi. 

Price parameter. Estimating price parameter would be prone to endogeneity because more popular 

products could be priced higher. To address this concern, we use a period of time when the platform 

ran price experiments in the category. Price experiments randomly varied prices of products from 

-12% to +12% as shown in Figure 16. Only a subset of products were part of the experiment. 

However, we still use the existing experimental variation to address the price endogeneity.45 

Clicking and scrolling costs. Experimental variation in the rankings and pixel-level data allows 

us to identify the clicking and scrolling cost. Baseline scrolling can be identifed from the number 

of scrolls that consumer makes in the data. However, the clicking cost can no longer be identifed 

simply from the number of searches that consumer makes. The reason is that consumer has to view 

the product to click on it. Therefore, the experimental variation in the product rankings allows us to 

identify the clicking cost. 

Product fxed efects. The probability that product j is purchased, conditional on being clicked 

identifes product fxed efects, ξj . If a product is rarely purchased compared to the others with 

similar observable attributes, then it must be that ξj < 0. 

Learning parameters (ρa) are identifed from the observational data. Suppose product j has 

negative fxed efect, ξj < 0. Given the covariance matrix, we know which products are most similar 

to product j in the observable characteristic space. Probability of clicking on a product that is 

45Alternatively, we could estimate the average price elasticities directly from the experiment and create a moment 
condition so that the implied price elasticity from the model would be arbitrarily close to the experimental price 
elasticity. This could be accommodated at the additional computational cost. 
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Figure 16: Price experiments 

Notes. This fgure shows the distribution of % price changes during the price 
experiments. The distribution is bimodal because experiment involved both 
the random increase and the decrease of prices. 

similar to j should be lower in case consumer exhibits learning, i.e., ρa > 0. Similarly, the probability 

of clicking on a product that is similar to j with ξj > 0 should be higher under learning. 

Exploration parameter is also identifed both from the observational and experimental data. 

Suppose product j has negative fxed efect, ξj < 0. If there is a product k that is very similar 

to product j, then under learning framework consumer has to have lower probability of searching 

product k, as explained above. However, consumer could also stay in that region especially if product 

payof uncertainty κkk ′ is high. Therefore, while jumps in attribute space identify the learning 

parameter, the reluctance to jump when sampling a product with a negative fxed efect identifes 

the exploration rate parameter. 

5.8. Estimation Results 

We estimate the model on two samples as required by the counterfactuals. Recall that in the 

counterfactuals, we change the product rankings by mimicking the privacy restrictions of interest. 

First counterfactual deletes frst-party data, i.e., that of consumers who arrive directly to the website. 

Second counterfactual deletes third-party data belonging to consumers who arrive from advertising 

channels. Thus, there are two samples that we estimate the model on: (i) consumers who arrive 

directly to the website and were frst-party cookie-recognized, and (ii) consumers who arrive from 

advertising channels. Table E14 and Table E15 in the Appendix show the results of the t-test 

confrming that the search and purchase behavior of these two samples of consumers are diferent. 

Thus, for the validity of the counterfactuals we estimate the model twice. 

Table 12 shows the estimation results for the cookie-recognized consumers, and Table 13 shows 

the estimation results for the advertising-based consumers. Qualitatively the results are similar 
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Table 12: Estimation results for cookie-recognized consumers 

Estimates 
β̂ st.err. 

Price ($) -0.814 (0.003) 
Rating 
# Ratings 

0.682 
1.839 

(0.002) 
(0.013) 

Image (x) -0.268 (0.009) 
Image (y) 0.899 (0.004) 

Scrolling cost ($) 
Clicking cost ($) 

0.113 
0.200 

ρprice 
ρrating 
ρ#ratings 
ρimage(x) 
ρimage(y) 

1.826 
0.023 
1.405 
0.871 
1.290 

(0.004) 
(0.301) 
(0.019) 
(0.008) 
(0.004) 

Log-likelihood 
# Consumers 

4,934 
9,500 

across both samples: consumers dislike high prices and like products with higher ratings and higher 

number of ratings. When it comes to images, higher x and y correspond to modern chairs as is 

illustrated in Figure G26 . Therefore, the model predicts that consumers in both samples prefer 

chairs more similar to modern or traditional styles. Scrolling cost is almost twice smaller than the 

clicking cost in dollar terms, which is intuitive. Consumers seem to be learning along all dimensions 

except product ratings (all other ρ’s are positive and signifcant). 

There are several diferences between two samples worth mentioning. First, consumers who arrive 

from advertising are less price sensitive (βprice = −0.430 versus -0.814 among cookie-recognized 

consumers). Second, consumers arriving from advertising have lower search costs (both clicking 

and scrolling). These patterns are consistent with the Table E15 provided in the Appendix, where 

consumers who arrive from advertising search more and purchase more expensive products. 

Table 13: Estimation results for advertising-based consumers 

Estimates 
β̂ st.err. 

Price ($) -0.430 (0.004) 
Rating 
# Ratings 

0.817 
2.005 

(0.000) 
(0.020) 

Image (x) -0.109 (0.001) 
Image (y) 1.720 (0.029) 

Scrolling cost ($) 
Clicking cost ($) 

0.051 
0.095 

ρprice 
ρrating 
ρ#ratings 
ρimage(x) 
ρimage(y) 

1.901 
0.050 
1.783 
0.180 
1.302 

(0.001) 
(0.602) 
(0.004) 
(0.002) 
(0.003) 

Log-likelihood 
# Consumers 

15,209 
8,000 

Thus, overall, the estimates make sense. To validate the model, we checked how well the model 
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fts the data moments. First, we test the model ft using the observational data moments, namely, 

the awareness set size of the consumers ( Figure J30 ). We also test the model ft by comparing 

predicted and data patterns during the Chrome event that occurred in 2020. During this event 

consumers’ search costs increased substantially and we confrm that the model can predict the data 

patterns well ( Figure J31 ). 

6. Counterfactuals 

This section shows the results of the counterfactuals we ran to evaluate the impact of privacy 

policies on the personalization outcomes. First, we describe the changes that occur in each 

counterfactual. Next, we explain the simulation procedure and present the results. 

I. First-party data restrictions. Recall that one of the big changes was Safari regulation that 

automatically resets cookies after seven days of consumer inactivity. Thus, if consumer arrives to 

the website more than seven days later than the initial session, the platform will not recognize her 

because frst-party cookies were reset. To mimic Safari’s 7 day cookie reset policy, frst, we re-trained 

personalization algorithm where the input data consisted only of the most recent 7-day searches for 

each consumer. That is, if consumer’s inter-session arrival time was more than 7 days, we split the 

data and created a new customer identifer. We then input the fragmented data into the model and 

re-trained it. For completeness, we compare the 7-day model with the re-trained models where we 

kept 60, 90 and 180 days of data for each consumer. Figure 17 shows the accuracy of the resulting 

personalization algorithm. The x-axis shows the number of personalized recommendations shown 

to the consumer. The y-axis shows the predictive accuracy of the model, where accuracy is defned 

as the percent of personalized items among the items that consumer eventually clicked on. Note 

that we use the ofine evaluation approach standard in Computer Science to plot these graphs: we 

fx the set of items consumer clicked on and evaluate whether the newly trained model would have 

recommended those items. Two points are worth mentioning. First, 7-day model exhibits signifcantly 

worse performance than all the other models. Second, there seems to be diminishing returns from 

data because 60, 90, and 180-days models perform similarly when they are allowed to show more 

recommendations. 

In the frst counterfactual, we change the personalized rankings using 7-day model assuming same 

fraction of Safari users in the counterfactuals as in the real data.46,47 We fx the estimated set of 

parameters for cookie-recognized consumers (Table 12) and simulate how consumers respond to the 

personalized rankings generated using 7-day model. 

46In the data, the share of Safari users is approximately 40%. 
47It might be useful for the reader to think of this as a linear regression y = α + βX + ε, where 7-day model is 

characterized by the parameters α, β. We input consumers’ browsing histories as X’s and the model gives the predicted 
ordered list of rankings. 
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Figure 17: Training accuracy by training data size 

Notes: This fgure shows the algorithm accuracy when we use 180, 90, 60, and 7 
days of data. The x-axis is the number of personalized recommendations shown. 
They y-axis shows the algorithm accuracy defned as the % of personalized 
items among the clicked ones. 

II. Chrome 2024 restriction on third-party cookies. In the second counterfactual, we 

concentrate on the efect of third-party cookie restrictions on recognition when consumers arrive from 

the display advertising channel. We mimic the Chrome restrictions by de-recognizing consumers who 

arrive from display advertising. Recall that it is 26% of the trafc in our sample (Figure 2). 

Note that if consumers are completely not recognized then they would see non-personalized 

recommendations and the comparison of personalized versus non-personalized rankings is already 

captured by the experiment. Instead, we simulate two more interesting situations. First, we re-train 

the personalization algorithm using the fragmented data where we de-recognize consumers who 

arrive from Chrome display advertising channel. The algorithm re-training generates counterfactual 

rankings. Next, in the simulations, we assume that consumers arrive from display advertising channel 

and, therefore, are anonymized under Chrome restrictions. Their frst session is non-personalized, 

and in subsequent sessions they get personalized recommendations using the re-trained algorithm. 

Second approach is as follows. Note that Chrome plans to ofer an alternative solution where 

platform may not be able to track consumers using third-party cookies, but will be able to get access 

to their aggregate interests. In addition to the simulations explained above, we also simulate a 

situation where Chrome does not show the platform who the consumer is but may share aggregated 

data based on consumers’ browsing history. For instance, Chrome may indicate that consumer is 

interested in modern chairs or glam style chairs. The beneft of the aggregated information is that 

platform can keep personalizing, and, from the regulatory perspective, the platform does not know 

the price point consumer is interested in.48 

48However, in Section 4, we showed that the platform benefts in long-term from showing better consumer-product 
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To simulate the aggregate information, we use a simple heuristic rule that clusters consumers 

into the product styles they are interested in. The major styles of dining chairs are: modern & 

contemporary, traditional, scandinavian, posh & luxe, industrial, french country, farmhouse, and 

coastal. Using a consumer’s browsing history, we calculate the number of clicked chair styles among 

all viewed products, and classify the consumer into the cluster (style) that got the highest share of 

clicks.49 We then personalize recommendations by showing a mix of bestseller and smaller seller’s 

products from the chair style consumer is most interested in. We then simulate how consumers will 

respond to this type of recommendations. 

Both approaches lead to qualitatively similar, but quantitatively diferent results, so in the 

subsequent discussion we show the results for the frst approach, and we include the results from the 

second approach in the Appendix K. 

III. Probabilistic Recognition Algorithm. Third counterfactual evaluates an algorithm proposed 

in Korganbekova and Zuber (2023) that aims at helping platforms adapt to privacy restrictions. The 

idea behind the algorithm is as follows. We use a device’s behavioral data (e.g., clickstream data and 

purchase behavior) and IP address information to predict the association between the device and the 

existing customer identifer. We use XGBoost algorithm to classify consumers. 

Counterfactual simulations. The simulation procedure for all three counterfactuals is similar. 

We fx the estimated set of parameters. The frst and third counterfactuals use the estimates for 

the cookie-recognized consumers (Table 12) and the second counterfactual (advertising) uses the 

estimates from Table 13. Each consumer sees non-personalized bestseller recommendations during 

the frst session. They decide between clicking, viewing, leaving, and purchasing. Suppose consumer 

searched for some products and left. We assume that consumer’s probability of re-visiting the website, 

i.e., multi-session search, is equal to the fraction of clicked products among viewed ones. This is 

motivated by the empirical patterns in the data and serves as a proxy for consumers’ interest level. 

One could argue that the opposite could be true: consumers who clicked a lot and left are less 

likely to return because they made up their minds. To account for that we add noise by allowing no 

re-visit with probability ε ∈ U (0, 1). When consumer re-visits the website, we have their browsing 

history and can generate rankings according to the counterfactuals. Table 14 summarizes all three 

counterfactuals. 

In the frst counterfactual, we generate the product rankings using 7-day personalized model 

assuming the same fraction of Safari users as in real data, and simulate how consumers respond 

to them. In the second counterfactual, we use re-trained algorithm where the data is fragmented 

as a result of Chrome restrictions. In the third counterfactual, we proceed as follows. We take 

matches, instead of pushing consumers towards higher margin items. 
49Note that accounting for the share of clicks among viewed products is a more accurate measure than to simply 

calculate the number of clicks. We could also give more weight to more recent clicks but wanted to keep the counterfactual 
simple. 
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Table 14: Summary of counterfactuals 

Counterfactual 1. Safari blocks frst-party cookies 

Estimates used: Table 12 
1.1 Use 7-day personalized ranking algorithm. 

Counterfactual 2. Chrome 2024 blocks third-party cookies 
Estimates used: Table 13 

2.1 Fragment the data by de-recognizing consumers who arrived from display advertising. 
2.2 Show personalized rankings using re-trained model. 

Counterfactual 3. Probabilistic Identity Recognition 
Estimates used: Table 12 

3.1 Identify cookie-recognized consumers who searched for multiple sessions. 
3.2 Apply probabilistic recognition algorithm to associate devices with the consumer identifers. 

cookie-recognized consumers who browsed using multiple devices. We take their frst sessions until 

the device change as given. As they re-visit the website using a new device, we run a separate 

probabilistic identity recognition algorithm to predict the association between the new device and 

the unique consumer identifer. We know the ground truth association between the devices and 

the consumers but conceal it to evaluate the algorithm. The algorithm produces a probability 

distribution indicating the probability that a device is associated with a consumer identifer. We take 

the consumer identifer with the highest predicted association and show the personalized rankings 

based on the associated consumer identifers’ browsing history. Note that in this counterfactual we 

use business-as-usual personalization algorithm. Next, we evaluate the consumers’ actions given the 

new set of rankings. 

The main outcomes of interest are (i) consumer welfare, (ii) consumers’ search and purchase 

outcomes, (iii) seller revenue, and (iv) platform’s revenue and proft. To have a common comparison 

benchmark, we compare consumer welfare to the welfare gains from the personalized rankings. We ran 

simulations with 10,000 consumers, where for each preference parameter and Gaussian Process draw, 

we generate and show personalized rankings. Consumer’s welfare from a ranking is defned as the 

utility obtained from the item purchased under that ranking, net of total clicking and scrolling costs 

incurred during search. We average consumer welfare across multiple rankings and then calculate 

the diference between the personalized rankings and non-personalized rankings welfare. We fnd 

that the welfare from personalized rankings amounts to $25.3 per purchase. See Table K23 in the 

Appendix for full results. 

Figure 18 shows the dollar and percent changes in consumer welfare as a result of privacy 

restrictions. The comparison benchmark is the personalized rankings. We fnd that consumers lose 

$4.78 after frst-party cookie blocking, $6.98 after third-party cookie restrictions, and $3.06 if we use 

probabilistic recognition versus full data personalization. Thus, in percentage terms up to 28% of 
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welfare gains from personalization are lost as a result of privacy restrictions. It is worth mentioning 

that (i) consumers are still better of than in the non-personalized condition despite the decrease in 

welfare, and (ii) our probabilistic algorithm can mitigate up to 56% of welfare losses. 

Figure 18: Counterfactual results: consumer welfare 

Notes: This fgure shows the results of the counterfactual simulations 
on consumer welfare by the three counterfactuals ran. Chrome 
counterfactual is using approach 1 and approach 2 results can be found 
in the Appendix. 

We breakdown the changes in welfare by the losses from the match value (utility), clicking 

costs, scrolling costs, and decreases in purchase probability for all three scenarios in Table K23 

. To illustrate, the welfare losses after Chrome restrictions are driven by the decrease in purchase 

probability (-24.65%), signifcant decrease in the match value conditional on purchase (-54.11%), and 

increase in the scrolling costs (+32.53%). Partially, the losses are ofset by the fact that consumers 

click less and, therefore, there are savings in the clicking costs (+11.28%). Given that the biggest 

driver of the welfare losses is the decrease in match value, this implies that consumers fnd it hard to 

fnd and, subsequently, purchase items that are more relevant towards their particular taste. Having 

said that, we also may be underestimating the welfare losses because we do not account for potential 

hassle costs in case consumers have to return the product post-purchase. 

To investigate the heterogeneity across consumers, we re-ran simulations focusing on diferent 

types of consumers. Namely, we breakdown the losses in welfare depending on the level of consumers’ 

search costs. We re-simulate the search and purchase behavior of the consumers with below and 

above median search costs. Figure 19 shows that consumers with high search costs will be most 

hurt by the 7-day Safari policy, losing $8.51 compared to the $1.06 lost by consumers with lower 

search costs. Similarly, above median search cost consumers will incur signifcantly higher welfare 

losses compared to those of consumers with lower search costs, i.e., $12.05 versus $1.92. However, 

the proposed ranking algorithm can signifcantly lower the welfare losses both for high search cost 
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and low search cost consumers. 
Figure 19: Counterfactual results: consumer welfare 

Notes: This fgure shows the results of the counterfactual simulations 
on consumer welfare by the three counterfactuals ran. Chrome 
counterfactual is using approach 1 and approach 2 results can be found 
in the Appendix. 

Next, we investigate the heterogeneity depending on both consumers’ search costs and price 

sensitivity. We fnd that blocking third-party cookies will hurt consumers who are more price 

responsive and have high search costs (top left dark part of Figure 20a). Maximum achievable 

utility in this category is $5-6. The mechanism is as follows: the algorithm is unable to pick up that 

consumers are price responsive because it uses aggregate data, and, therefore, shows higher priced 

items. Because consumers have high search costs they are more likely to leave the website without 

purchasing (in which case, the utility is zero). Alternatively, they buy an item with lower utility 

than they would otherwise get in the full personalized condition. Consumers who have low price 

sensitivity and low search costs get the highest possible utility among all groups (right bottom part 

of Figure 20a). 

Figure 20b shows that using the probabilistic recognition algorithm, we can increase welfare for 

the consumers in the mid range: the dark blue region in Figure 20a moves from $(6,7] region to 

$(7,9] range. Less price responsive groups with lower search costs are also better of. The takeaway 

is that while the algorithm can beneft consumers that have lower search costs and are more prone to 

re-visit the website, it is hard to help more vulnerable sets of consumers: more price sensitive and 

those with high search costs, because they leave without arriving back. Thus, these results call for 

alternative regulation that would take into account that privacy regulation hurts vulnerable groups 

of consumers more than others. 

Next, we evaluate the impact of privacy restrictions on the seller outcomes. We divide sellers 

into two groups based on the historical revenue earned: 10th percentile-revenue sellers and 90th 
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Figure 20: Heterogeneity in consumer welfare by search costs and price elasticities 

(a) Chrome 2024 event (b) Probabilistic Recognition 

Notes. This fgure shows the heterogeneity analysis to investigate the impact of privacy restrictions and alternative 
algorithm on consumer welfare. We simulate the consumer welfare by diferent price elasticity and search costs group. 

percentile-revenue sellers (Figure 21). We fnd that privacy restrictions do not afect large sellers’ 

revenue as much as they afect smaller sellers. First-party cookie restrictions decrease smaller sellers’ 

revenue by 5.64%, and third-party Chrome restrictions decrease revenue by 8.59%. 

Figure 21: Counterfactual results: seller outcomes 

Notes: This fgure shows the results of the counterfactual simulations on 
seller outcomes. Blue bars correspond to sellers that were in the 10th 
percentile by historical revenue, and orange bars are the 90th percentile 
sellers. The x-axis shows the three counterfactuals and the y-axis shows 
the % revenue change as a result of privacy restrictions. 

The mechanism is as follows: with distorted data, personalization algorithms do not show relevant 

items and sometimes tend to resort to showing large sellers’ products. Therefore, the privacy 

restrictions lead to the decrease in smaller sellers’ revenue. Our proposed algorithm performs better 

because in the cases where it correctly predicts the association between devices and consumers, it will 

be equivalent to the full personalization algorithm. The takeaway from this part of the analysis is 
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that privacy restrictions disproportionately hurt smaller sellers on the platform, and this is something 

current regulation may want to fx. 

Finally, we investigate the consumers’ search/purchase outcomes which directly translate to 

platform’s revenue and proft. We use the platform’s detailed cost data to calculate profts. Figure 

22 shows three sets of results: (i) comparison between full personalization and non-personalized 

rankings (full personalization), (ii) comparison between Chrome outcomes and non-personalized 

rankings (Chrome), and (iii) probabilistic algorithm versus non-personalized rankings (probabilistic). 

Note that in this part of the analysis we use the non-personalized rankings as a benchmark to put the 

experimental results in perspective. Thus, blue bars are plotted experimental results from Section 4, 

and the rest are calculated based on the model. 

Figure 22: Counterfactual results: consumer and platform outcomes 

Notes: This fgure shows the shares of trafc that arrive from diferent sources. The 
total doesn’t sum up to 100, because one consumer can arrive through multiple 
channels. Majority of consumers would be recognized via frst-party cookies given 
that they arrive from Google product ads or Direct trafc. For the consumers who 
arrive from display advertising, the platform relies on third-party cookies. 

First, we see that both click and conversion rates, and revenue decrease signifcantly in the 

Chrome condition (orange bars in Figure 22). However, probabilistic recognition algorithm can 

recover substantial parts of the benefts from personalization (green bars), although all metrics 

are still lower compared to the full personalization condition. We also see that platform profts 

are less impacted than their revenues. The reason is that bestseller products are typically located 

in platform-owned distribution centers, which make their shipping costs lower. Therefore, for the 

platform it is cheaper to ship bestseller products rather than smaller sellers’ products. Therefore, 

although we see signifcant decreases in revenue as a result of Chrome restrictions, the proft is 

impacted less. Moreover, we also have evidence that larger (bestseller) products tend to give more 

discounts and allowances on the wholesale costs, which additionally helps maintain profts even under 

privacy restrictions ( Table E13 ). 

45 



There are three main takeaways from the counterfactual analysis described in this section. First, 

privacy restrictions hurt consumers who are more price responsive and have higher search costs. 

Second, privacy restrictions disproportionately hurt smaller sellers who rely on personalization 

algorithms to gain prominence on the website. Finally, platform revenue is hurt by the privacy 

restrictions, while its proft is relatively not impacted because of the diferent cost structure for large 

and small sellers. 

6.1. Discussion 

There are several concerns that could arise related to the counterfactuals. In the frst 

counterfactual, we use the 7-day model to generate rankings. One could argue that the platform 

could keep using the entire historical data in order to generate rankings. However, we view the 

counterfactual as the way to evaluate the long-term impact of these privacy restrictions. In the 

long-term, the value of the historical data may fall either due to diferent product assortment or 

changes in consumer preferences, which is why the platform will use the available more recent data. 

In the second counterfactual, the underlying assumption is that platform keeps advertising. 

However, Chrome restrictions could afect the ability to advertise to begin with, in which case 

consumers would not see the platform’s ads at all. However, since Chrome is ofering diferential 

privacy and other Privacy Sandbox-based solutions,50 we assume that the platform will be able to 

advertise in some form. For instance, it would not be able to show re-targeted ads featuring products 

similar to the browsed ones, but it could show generic platform ads. 

Finally, with all counterfactuals, one could worry that consumers may start authenticating in 

case they see irrelevant products. This is one of the limitations of the study where we do not know 

how consumers’ authentication decisions will change as a result of privacy restrictions. Moreover, 

platforms may ofer other solutions to make authentication process easier, such as biometric login. 

As a result, more consumers will login voluntarily and the platform will continue collecting the data 

directly from consumers without relying on cookies. These are platform actions that we cannot take 

into account in one paper, but this could open an interesting future stream of work that could help 

platforms mitigate the negative consequences of privacy restrictions. 

7. Conclusion 

In this paper, we empirically study the efects of personalization and privacy restrictions on the 

retail platform, its consumers and sellers. To do that, we use large-scale feld experiments ran with 

Wayfair, their detailed clickstream data and the platform’s personalization algorithm. First, we use 

the experiments to quantify the reduced-form measures of welfare gains from personalization on 

50See the Privacy Sandbox article for more details. 
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consumers, sellers and the platform. Second, we develop a novel multi-session consumer search model 

in the presence of personalized recommendations to evaluate how current and upcoming privacy 

restrictions afect consumers, sellers and the retail platform. Finally, we evaluate how probabilistic 

recognition solutions may help mitigate the negative consequences of privacy restrictions. 

Experimental results suggest that personalization benefts consumers, smaller sellers and the 

platform. Consumers in the personalized condition buy more expensive but higher quality products, 

and they are 10% less likely to return the purchased product. Second, we show that smaller 

sellers are 15% more likely to be shown higher up on the product ranking pages, and therefore 

generate substantial part of their revenue from personalized impressions. These results suggest that 

personalization leads to better matches of consumers and sellers, and that it gives chance for the 

smaller sellers to grow their businesses. 

To evaluate how alternative privacy policies impact consumers and sellers, we develop a structural 

model of consumer search and learning in the presence of recommendations. We re-train platform’s 

personalization algorithm with distorted data mimicking privacy restrictions of interest to generate 

counterfactual recommendations. Next, we use the model to simulate how consumers’ search and 

purchase behavior change under counterfactual recommendations. The results imply that a consumer 

gets $25 welfare gain from personalization per purchase. However, privacy restrictions, such as 

Chrome blocking third-party cookie tracking or Safari blocking frst-party cookie tracking will decrease 

these welfare gains by up to 50%. More price responsive consumers and smaller sellers are hurt the 

most. 

To the best of our knowledge, this is the frst paper that empirically studies the impact of 

current and upcoming privacy restrictions on personalization algorithms and their subsequent efects 

on consumers, sellers, and platforms’ outcomes. The question has signifcant importance because 

personalization plays key role in navigating consumers through thousands or even millions of products 

that platforms carry. Our results suggest that privacy restrictions disproportionately hurt smaller 

sellers and more price responsive consumers. This calls to alternative privacy regulations that address 

privacy concerns without unduly burdening small businesses or hindering consumer experiences. We 

show that probabilistic recognition algorithms can help platforms mitigate the negative consequences 

of the privacy restrictions, striking a balance between privacy and personalization. 
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A. Current privacy policies and their impact 

To validate the countefactuals, we identifed a natural experiment: a change in browser policies 

that, while announced in advance, was rolled out unexpectedly, leaving the focal platform unprepared 

for it. Namely, in March of 2020 Chrome rolled out SameSite policy updates that blocked the use of 

cookies in third-party contexts and afected the trafc that was originating from advertising. The 

policy allowed to use cookies in the frst-party context, but blocked all third-party requests. As 

a result, if consumer saw Wayfair ad on a third-party website, e.g. weather.com and clicked on 

it, as she navigates to wayfair.com, consumer’s cookies were reset. Cookie resetting means that 

the consumer gets a complete new user identifer and Wayfair does not have access to consumer’s 

browsing histories. As a result, Wayfair’s ability to personalize is limited. The policy was short-lived 

in that Chrome rolled it back in April 2020, worried that a large number of advertisers depended on 

third-party cookies in Covid times.51. Despite the transient nature of the policy, it had signifcant 

efects on platform’s ability to recognize the trafc and to personalize. Below, we describe the policy 

in more detail and show the impact on consumers and the platform. We use this natural experiment 

to check how well the model can replicate the observed data. 

Figure A1: Timeline of the Chrome SameSite update releases 

Small % of Policy rolled-out Policy rolled back 
users afected Chrome v80+ 

users afected 

Feb 2020 Mar-Apr 2020 Apr 3 of 2020 

Notes: Chrome released the updates gradually for a fraction of Chrome Canary and Dev users starting October 
2019, and in March of 2020, Chrome increased the target population afecting most Chrome users. However, on April 
3, 2020, in light of global pandemic, Chrome decided to roll back the changes not to hurt advertisers who rely on 
third-party data. Afterwards, starting July 14, 2020, they rolled out the changes again with the rollout population 
gradually increasing on July 28, 2020 and on August 11, 2020 - the changes were rolled out to 100% of Chrome Stable 
users. Source: Ofcial Chrome SameSite updates. 

Chrome SameSite policy updates are secure-by-default changes that protect all cookies from 

external access unless otherwise specifed by the user. Most Chrome version 80+ users were afected 

and didn’t change the default setting.52 Academic research also found that even when ofered an 

opportunity to opt out from online advertising very few consumers choose to change the default 

settings (Johnson, Shriver and Du, 2020). As a result, during one month in March-April of 2020, the 

platform was limited in its ability to recognize Chrome users unless they logged in to the website 

51For detailed policy releases, see the SameSite updates. 
52As was documented for Apple’s App Tracking Transparency (ATT) changes, consumers tend to stick with the 

default browser and app settings and do not change them. See Harvard Business Review: Apple Is Changing How 
Digital Ads Work. Are Advertisers Prepared? 
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voluntarily. 

Figure A2 shows that the recognition rates on Chrome dropped drastically during the policy 

period. The x-axis of Figure A2 shows month-year. The roll-out of Chrome SameSite policy in 

March-April 2020 highlighted in grey, and y-axis shows scaled device recognition rates. We observe 

similar trends in the recognition rates before March 2020 (indicating that parallel trend assumption 

is satisfed). However, Chrome (red line) exhibits a drop in the recognition rates in March-April 

2020, recovering only in April when the changes were rolled back. 

Figure A2: Recognition rates per major browser (February 2020 - June 2020) 

Notes. This fgure shows the platform’s recognition rates before, during and after the 
Chrome changes (February - June 2020). The shaded area is the period during which 
Chrome policy kicked in. The graph explicitly shows recognition on Chrome browser 
drastically decreased during that period and only started recovering in April 2020 (red 
line). The y-axis is hidden for data sensitivity reasons. 

To further quantify the extent of recognition drop, we estimated diference-in-diferences regression 

on the constructed browser-day level panel that documents daily recognition among diferent browsers. 

In Equation 21, j is the browser, t - day, 1{j = Chrome} is the indicator for Chrome, 1{after} is 

the indicator for the period between March 2, 2020 and diferent dates after April 3, 2020. 

yjt = α + β11{j = Chrome} + β21{after} + β31{j = Chrome}1{after} + εjt (21) 

Table A1, Column 1, shows that Chrome recognition rates dropped by 3.2 percentage points after 

the policy was implemented. The results are robust to diferent policy window defnitions. Columns 

(2) and (3) of Table A1 show that under a narrower window, the efect of recognition rates is around 

3.2-3.7 percentage points. We cannot disclose the intercept for data sensitivity reasons, but each 

percentage point in recognition amounts to the loss of data for millions of consumers. 
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Table A1: Diference-in-diferences results for Chrome policy-related recognition rates 

After 

Feb 1-May 1, 2020 

(1) 

1.620∗∗∗ 

(0.481) 

Dependent variable: 
Recognition rate 

Feb 1-Apr 3, 2020 

(2) 

−0.268 
(0.500) 

Feb 1 -Apr 15, 2020 

(3) 

0.302 
(0.527) 

Treatment 7.303∗∗∗ 

(0.442) 
7.868∗∗∗ 

(0.623) 
7.471∗∗∗ 

(0.631) 

After× Treatment −3.220∗∗∗ 

(0.834) 
−3.785∗∗∗ 

(0.867) 
−3.388∗∗∗ 

(0.914) 

Observations 330 180 195 

Notes. This table reports the results of the diference-in-diferences estimation (Equation 21) 
investigating the efect of Chrome SameSite policy on platform’s recognition rates. Data is at 

∗the browser-day level. Intercept is hidden for data sensitivity reasons. Signifcance levels: p < 
∗∗ ∗∗∗0.05, p < 0.01, p < 0.001. 

Table A2 shows that the reduction in recognition rates resulted in lower platform revenue. 

Platform revenue decreased by 2.8 - 3.2 percent after the Chrome policy was rolled out. 

Table A2: Efect of Chrome on revenue 

After× Treatment 

Dependent variable: 
Scaled revenue 

Feb-April 2020 Feb-May 2020 

(1) (2) 

−0.032∗∗∗ −0.028∗∗ 

(0.012) (0.011) 

Observations 180 330 

Notes. This table reports the interaction terms from estimation 
of specifcation 21. We investigate the efect of Chrome SameSite 
updates on the platform revenue. Intercepts are hidden for 

∗ ∗∗data sensitivity reasons. Signifcance levels: p < 0.05, p < 
∗∗∗0.01, p < 0.001. 

Table A3 shows that the drop in revenue was driven by lower conversion rates after Chrome 

policy change (Column 4) and lower number of orders (Column 5). Consumers click more (Column 1) 

which could mean they incur higher search costs to fnd relevant items after privacy restrictions were 

introduced. We do not fnd signifcant diferences in add-to-cart or basket page landing probability, 

but conversion rates drop signifcantly. 

Finally, we evaluate the impact of the privacy restriction on the data that was 

Data impact for the training models. Data can be used in two ways: frst, sequence of products 

searched is important; second, sequence of events (actions) performed on the website by a consumer. 

We fnd that total rows of training data goes down by 5% and total number of products goes down by 

2%. Thus, training data amount is defnitely impacted even with one month of the policy changes. 
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Table A3: Impact of Chrome SameSite changes on consumer outcomes 

Purchase funnel Purchase outcomes 

Chrome 

(1) 
Clicks 

1.207∗∗∗ 

(0.385) 

(2) 
Add-to-cart 

-1.270∗∗∗ 

(0.098) 

(3) 
Basket page 

-1.168∗∗∗ 

(0.094) 

(4) 
Converted 
-1.037∗∗∗ 

(0.049) 

(5) 
Orders 

-1.105∗∗∗ 

(0.053) 

(6) 
Average revenue 

8.258∗∗∗ 

(2.546) 

After 0.748∗∗ 

(0.352) 
0.973∗∗∗ 

(0.090) 
1.073∗∗∗ 

(0.086) 
0.661∗∗∗ 

(0.045) 
0.780∗∗∗ 

(0.048) 
1.001 

(2.327) 

After× Chrome 

Observations 

0.859∗ 

(0.498) 
304 

-0.127 
(0.127) 

304 

-0.160 
(0.122) 

304 

-0.216∗∗∗ 

(0.063) 
304 

-0.297∗∗∗ 

(0.068) 
304 

-6.251∗ 

(3.291) 
304 

Notes. This table reports the results of the diference-in-diferences estimation (Equation 21) investigating the 
efect of Chrome SameSite policy on consumers’ search and purchase outcomes. Intercept is hidden for data 

∗ ∗∗ ∗∗∗sensitivity reasons. Signifcance levels: p < 0.05, p < 0.01, p < 0.001. 

Table A4: Data impact as a result of Chrome SameSite changes 

Treatment 
Total rows 
3.282∗∗∗ 

(0.251) 

Log products 
0.085∗∗∗ 

(0.008) 

After 7.035∗∗∗ 

(0.456) 
0.141∗∗∗ 

(0.014) 

After× Treatment 

Product FE 

-3.123∗∗∗ 

(0.230) 
2,437,195 

-0.051∗∗∗ 

(0.007) 
2,437,195 

Notes. This table reports the results of the diference-
in-diferences estimation (Equation 21) investigating 
the efect of Chrome SameSite policy on the scaled 
number of rows and log products. Intercept is hidden 

∗for data sensitivity reasons. Signifcance levels: p < 
∗∗ ∗∗∗0.05, p < 0.01, p < 0.001. 
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B. Proof of near-optimality of the UCB algorithm with search costs 

The proof is built on the material in Golovin et al. (2014) and Nemhauser et al. (1978). The 

main diference is that in Engineering it is common not to account for potential search costs, but in 

our setting it is crucial to account for the search costs. 

Consider a problem when consumer learns a payof function f (x), x ∈ D where x is an action 

taken by a consumer. The goal is to maximize the function f (xt) with respect to action xt, i.e. 

maxxt f (xt). In our setting, the action is the product to click on. Instantaneous regret is defned as 

T rt = f(x ∗) − f (xt) and the cumulative regret is RT = t=1 rt. Intuitively, regret represents the loss 

from clicking on a product that is diferent from the product that maximizes the payof function 

f(xt). Consumer’s goal is to minimize the cumulative regret RT .53 

Proposition 1. Searching using Upper Confdence Bound to learn a function f (x) leads to a fnite 

regret bound of O( TγT log|D|) with high probability 1 − δ, δ ∈ (0, 1). Regret bound is 

P [RT ≤ C1TβT γT ∀T ≥ 1] ≥ 1 − δ 

where C1 = 8/log(1 + σ−2) and T is the number of rounds of sampling an individual point. 

Proof. Fix some t ≥ 1 and x ∈ D. Conditional on all the utility values sampled so far, 

u1, ..., ut−1, x1, .., xt−1 are deterministic and subsequent payof functions are drawn from f(x) ∼ 

N (µt−1(x), σt 
2 
−1(x)). For a standard normal variable r ∼ N (0, 1), we can show that 

⎫ ∞ ⎫ ∞ 
−r −r2/2+cP [r > c] = √ 

1 
e 

2/2dr = 
1 

e 
2/2dr

2π c 2π c ⎫ ∞ 
−c2/2 1 −(r−c)2/2 = e e e −c(r−c)dr2π c 

Because e−c(r−c) ≤ 1 and the rest of the integral resembles Gaussian density integrated from c to 

∞, we can write 

⎫ ∞ 
−c2/2 1 −(r−c)2/2 1 −c2/2 e e e −c(r−c)dr ≤ 2e2π c 

ct−1(x)Using r = (f (x) − µt−1(x))/σt−1(x) and c = η − , we get that for any given x ∈ D and 
σt−1(x) 

timepoint t ≥ 1, 

−(ησt−1(x)−ct−1(x))2/2P [|f (x) − µt−1(x)| > ησt−1(x) − ct−1(x)] ≤ e 

53We re-write the objective function in this way for tractability. Intuitively, minimizing cumulative regret means 
that consumer wants to reach the best possible product with minimal regret, e.g. time spent on clicking on ’wrong’ 
products. 

57 



�

�
�

�

Applying the union bound over all x ∈ D, we get 

 
 

P∪x∈D |f (x) − µt−1(x))| > ησt−1(xt) − ct−1(xt) ≤ P [|f (x − µt−1(x))| > ησt−1(x) − ct−1(xt)] 
x∈D 

−(η−ct−1(xt)/σt−1(x))2/2≤ |D|e 

By defning the variables appropriately, we can apply union to all timepoints t ∈ N to get 

 
 ∞ 

P∪x∈D |f (x) − µt−1(x))| > ησt−1(xt) − ct−1(xt) ≤ P [|f (x − µt−1(x))| > ησt−1(xt) − ct−1(xt)] 
t=1 

∞ δ ≤ = δ 
πtt=1 

If we change the inequality to upper bound the term |f (x) − µt−1(x))| for all x ∈ D and all 

t ≥ 1, we can write 

|f (x) − µt−1(x))| ≤ ησt−1(xt) − ct−1(xt) 

Next, we construct a bound for the instantaneous regret function: rt = f (x ∗) − f(xt). Upper 

1/2Confdence Bound algorithm specifes choosing xt as the argmax of µt−1(xt) + β σt−1(xt) at each t 

timestep. Thus, we have 

µt−1(xt) + ησt−1(x) − ct−1(xt) ≥ µt−1(x ∗ ) + ησt−1(x ∗ ) − ct−1(x ∗ ) (22) 

This can be rewritten as 

rt = f (x ∗ ) − f (xt) ≤ ησt−1(x ∗ ) − ct−1(x ∗ ) + f (xt) − µt−1(xt) ≤ 2[ησt−1(xt) − ct−1(x)] (23) 

We now continue towards constructing regret bounds for the cumulative regret function. For 

a Gaussian process with a covariance matrix σ2I, the expression for the information gain can be 

written as 
1 

I(yT ; fT ) = H(yT ) − H(yT |fT ) = H(yT ) − 2 log|2πeσ
2I| (24) 

Since the determinant of the diagonal matrix is the product of the diagonal elements, we write 

T1 1 
2 log|2πeσ

2I| = log(2πeσ2) (25)2 
t=1 

We can expand out H(yT ) as 

1 
H(yT ) = H(yT −1) + H(yT |yT −1) = H(yT −1) + 2 log(2πe(σ

2 + σT 
2 
−1(xT ))) (26) 
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We can write the variance term in the entropy expression as a sum of variances due to the fact that 

x1, ..., xT are deterministic conditioned on yT −1, and the conditional variance σT 
2 
−1(xT ) does not 

depend on yT −1. Expansion of the entropy terms gives us 

T 

H(yT ) = 
1 

log(2πe(σ2 + σt 
2 
−1(xt))) (27)2 

t=1 

Substituting (27) and (25) into (24) gives us 

I(yT ; fT ) = H(yT ) − H(yT |fT ) 

T T 

= 
1 

log(2πe(σ2 + σt 
2 
−1(xt))) − 

1 
log(2πeσ2)2 2 

t=1 t=1  
T1  2πe(σ

2 + σt 
2 
−1(xt)) = log 2 2πeσ2 

t=1 

T 

= 
1 

log(1 + σ−2σt 
2 
−1(xt)) 2 

t=1 

1/2 ct−1(x)Let’s denote βt = η − . We know that rt 
2 ≤ 4βtσt 

2 
−1(xt), ∀t ≥ 1 with probability 

σt−1(x) 
≥ 1 − δ. Since βt is nondecreasing for increasing t ≤ T , we can write 

4βtσt 
2 
−1(xt) ≤ 4βT σt 

2 
−1(xt) 

′Using the restriction that κ(x, x ′ ) ≤ 1 for all x, x means that σt 
2 
−1(xt) ≤ 1 for all t. For positive s, 

σ−2σ2 σ−2 
t−1(xt) ≤ 

log(1 + σ−2σt 
2 
−1(xt)) log(1 + σ−2) 

σ−2 

σ−2σt 
2 
−1(xt) ≤ log(1 + σ−2σt 

2 
−1(xt)) 

log(1 + σ−2) 

4βT σt 
2 
−1(xt) = 4βT σ

2(σ−2σt 
2 
−1(xt)) ≤ 4βT σ

2C2log(1 + σ−2σt 
2 
−1(xt)) 

where C2 = σ−2/log(1 + σ−2). We can combine the inequalities derived for the instantaneous regret 
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and write 

T T T 
2 σ2 r ≤ 4βT t−1(xt) ≤ 4βT σ

2C2 log(1 + σ−2σt 
2 
−1(xt)) t 

t=1 t=1 t=1  
T  1 

= 8σ2C2βT 2 
log(1 + σ−2σt 

2 
−1(xt)) 

t=1 

= C1βT I(yT ; fT ) ≤ C1βT γT 

where C1 = 8σ2C2 = 8/log(1 + σ−2). 

Next, using Cauchy-Schwarz inequality, we get 

    2 
T T T T 

R2 =   ≤  r 2 1 = T r 2 
T t t 

t=1 t=1 t=1 t=1 

√
Therefore, RT ≤ 

q 
T t

T 
=1 rt 

2 ≤ C1TβT γT . This inequality holds with probability ≥ 1 − δ. This 

concludes the proof of Proposition 1. 
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C. Randomization Checks 

This section provides randomization checks for the consumers that were part of the A/B tests we 

ran with the platform. All variables are scaled for data anonymity reasons. Table C5 shows that all 

p-values are large indicating that there are no signifcant a-priori diferences between the treatment 

and control group consumers. 

Table C5: Randomization check in dining chairs (return to p. 14) 

Non-personalized 
(1) 

Personalized 
(2) 

Diference 
(3) 

p-value 
(4) 

Historical Purchases ($) 886.98 937.77 -50.79 
(-1.26) 

0.21 

Historical Quantity Bought 6.19 6.51 -0.32 
(-1.22) 

0.22 

Estimated networth 348,657.63 346,654.85 2,002.77 
(1.51) 

0.13 

Estimated income 70,847.86 70,779.64 68.22 
(0.48) 

0.63 

Age 24.90 24.89 0.01 
(0.52) 

0.60 

Home Value 175,067.06 175,177.83 -110.77 
(-0.19) 

0.85 

Prices searched 87.24 87.29 -0.05 
(-0.20) 

0.84 

Gender dummy (0,1) 0.85 0.85 0.00 
(0.22) 

0.82 

Observations 319,783 315,484 

Notes. This table provides randomization check between the treatment and control groups in the 
experiment ran on the ranking pages. The numbers are scaled for data anonymity purposes. 
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D. Additional experimental results 

These results are likely attenuated because not everyone will see personalized impressions. If 

we look only at the consumers that had history to personalize from then I’ll see that the results 

are even higher. Note that because the experiment was randomized regardless of the historical 

patterns of consumers, we have a balanced sample across two groups. In the non-personalized group 

there are 1,799,908 consumers, while in the personalized group there’re 1,806,831 consumers. The 

randomization checks are in the appendix. That means that around 36% of people in each group had 

historical searches on the website. 

Table D6: Personalization experiment results: search and purchase outcomes (return to p. 16) 

(1) 
Clicks 

Logistic 

(2) (3) 
Add-to-cart Basket page 

(4) 
Converted 

(5) 
Log(Revenue) 

OLS 

(6) 
Purchases 

(7) 
Log(Proft) 

Personalized 0.002 
(0.001) 

0.013∗∗∗ 

(0.002) 
0.011∗∗∗ 

(0.002) 
0.017∗∗∗ 

(0.002) 
0.009∗∗∗ 

(0.001) 
0.007∗∗∗ 

(0.001) 
0.006∗∗∗ 

(0.001) 

Intercept 

Observations 

1.016∗∗∗ 

(0.001) 
9,818,022 

-1.271∗∗∗ 

(0.001) 
9,818,022 

-1.382∗∗∗ 

(0.001) 
9,818,022 

-2.275∗∗∗ 

(0.002) 
9,818,022 

0.579∗∗∗ 

(0.001) 
9,818,022 

0.253∗∗∗ 

(0.001) 
9,818,022 

– 
(0.001) 

9,818,022 

Notes. This table reports the output from the estimation of equation 1 for all nine million consumers. Data is at the 
consumer-level. Columns (1)-(4) report the logistic specifcation and Columns (5)-(7) report the OLS specifcation results. 
Robust standard errors in parentheses. The intercept in proft Column (7) is hidden for data sensitivity reasons. Statistical 

∗ ∗∗ ∗∗∗signifcance: p < 0.05, p < 0.01, p < 0.001. 

Table D7: Efect of personalization on repeat visits and product returns (all consumers) (return to p. 19) 

(1) 
7 days 

(2) 
30 days 

Repeat purchases 

(3) (4) 
90 days 150 days 

(5) 
365 days 

(6) 
500 days 

Returns 

(7) 
product returns 

Personalized 0.019∗∗∗ 

(0.007) 
0.012∗∗ 

(0.005) 
0.017∗∗∗ 

(0.003) 
0.014∗∗∗ 

(0.004) 
0.012∗∗∗ 

(0.004) 
0.017∗∗∗ 

(0.005) 
0.010∗∗∗ 

(0.003) 

Personalized× Personalized product -0.104∗∗∗ 

(0.010) 

Intercept 

Observations 

-2.083∗∗∗ 

(0.005) 
933,510 

-1.203∗∗∗ 

(0.003) 
933,430 

-0.305∗∗∗ 

(0.002) 
1,511,657 

-0.374∗∗∗ 

(0.003) 
933,328 

0.092∗∗∗ 

(0.003) 
933,246 

0.303∗∗∗ 

(0.004) 
602,954 

-2.764∗∗∗ 

(0.002) 
9,056,732 

Notes. This table shows the efects of personalization on repeat purchases and product return rates for all consumers in the experiment. 
Columns (1) - (6) are estimated using logit version of 1. Data are at the consumer level. Column (7) is the estimation of Equation 
3. Data are at the consumer-purchased product level. Consumers in the personalized group might buy the item that was part of the 
organic rankings and wasn’t personalized to them and we control for that by interacting the treatment dummy with the indicator for 
whether the product was personalized. For statistical power, we’ve included all consumers who were shopping in dining chairs category and 
their visits to the same marketing category, i.e. dining chairs, chairs, Each column represents the set of people who purchased a dining 
chair and we check the probability they will purchased in 7, 30, 90 etc. days. Robust standard errors in parentheses. Signifcance levels: 
∗ ∗∗ ∗∗∗ p < 0.05, p < 0.01, p < 0.001. 

yi = α + β1treatmenti + β2filteredi + β3treatmenti × filteredi + εi (28) 
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Table D8: Personalization experiment results: search and purchase outcomes (consumers with browsing 
history) (return to p. 16) 

(1) 
Clicks 

Logistic 

(2) (3) 
Add-to-cart Basket page 

(4) 
Converted 

(5) 
Log(Revenue) 

OLS 

(6) 
Purchases 

(7) 
Log(Proft) 

Personalized 0.000 
(0.004) 

0.014∗∗∗ 

(0.002) 
0.011∗∗∗ 

(0.002) 
0.018∗∗∗ 

(0.003) 
0.020∗∗∗ 

(0.003) 
0.017∗∗∗ 

(0.002) 
0.013∗∗∗ 

(0.002) 

Intercept 

Observations 

2.143∗∗∗ 

(0.003) 
3,121,011 

-0.218∗∗∗ 

(0.002) 
3,121,011 

-0.258∗∗∗ 

(0.002) 
3,121,011 

-1.201∗∗∗ 

(0.002) 
3,121,011 

1.443∗∗∗ 

(0.002) 
3,121,011 

0.656∗∗∗ 

(0.002) 
3,121,011 

– 
(0.002) 

3,121,011 

Notes. This table reports the output from the estimation of equation 1 for the consumers with browsing history. Data is 
at the consumer-level. Columns (1)-(4) report the logistic specifcation and Columns (5)-(7) report OLS specifcation results. 
the results of OLS regression on the experimental data. Robust standard errors in parentheses. Statistical signifcance: 
∗ ∗∗ ∗∗∗ p < 0.05, p < 0.01, p < 0.001. 

Table D9: Further evidence that fltering doesn’t change outcomes (return to p. 27) 

Logistic OLS 

(1) 
Clicks 

(2) 
Add-to-cart 

(3) 
Basket page 

(4) 
Converted 

(5) 
Log(Revenue) 

(6) 
Purchases 

(7) 
Log(Proft) 

Personalized 0.010 
(0.013) 

0.013∗∗ 

(0.006) 
0.016∗∗∗ 

(0.006) 
0.015∗∗ 

(0.006) 
0.021∗∗ 

(0.009) 
0.026∗∗∗ 

(0.008) 
0.017∗∗ 

(0.007) 

Filtered 0.143∗∗∗ 

(0.021) 
0.260∗∗∗ 

(0.009) 
0.230∗∗∗ 

(0.009) 
0.384∗∗∗ 

(0.009) 
0.617∗∗∗ 

(0.014) 
0.528∗∗∗ 

(0.016) 
0.501∗∗∗ 

(0.011) 

Personalized× Filtered -0.040 
(0.029) 

-0.007 
(0.012) 

-0.007 
(0.012) 

-0.001 
(0.013) 

0.001 
(0.020) 

-0.006 
(0.023) 

-0.004 
(0.016) 

Intercept 

Observations 

2.957∗∗∗ 

(0.009) 
635,267 

0.188∗∗∗ 

(0.004) 
635,267 

0.096∗∗∗ 

(0.004) 
635,267 

-0.962∗∗∗ 

(0.004) 
635,267 

1.808∗∗∗ 

(0.006) 
635,267 

0.975∗∗∗ 

(0.006) 
635,267 

– 
(0.005) 
635,267 

Notes. This table reports the results of Equation 28. We investigate whether fltering plays an important part in changing consumer 
outcomes. Data is at the consumer level. Standard errors in parentheses. Intercept in Column (7) is hidden for data sensitivity 

∗ ∗∗ ∗∗∗ reasons. Robust standard errors. Statistical signifcance: p < 0.05, p < 0.01, p < 0.001. 

Figure D3: Treatment Intensity (return to p. 15) 

Notes. This fgure shows the relationship between the session order and 
the % of the personalized products on the frst four pages. Platform 
personalizes more as it collects more data on consumer clicks. 
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E. Additional descriptive statistics 

Table E10: Number of devices and browsers used (return to p. 10) 

Observations Mean St.Dev. Min 25% 50% 75% Max 

# Devices 

multi-session consumers 321,967 3.06 2.97 1.00 1.00 2.00 4.00 14.00 

purchasing consumers 43,110 4.88 3.50 1.00 2.00 4.00 7.00 14.00 

# Browsers 

multi-session consumers 321,967 1.31 0.54 1.00 1.00 1.00 2.00 6.00 

purchasing consumers 43,110 1.02 0.15 1.00 1.00 1.00 1.00 3.00 

Notes. This table reports the number of devices and browsers used by consumers who visited the websites for 
multiple sessions. Median consumer searches on two devices from the same browser, and purchasing consumers 
search more intensively and use four devices. 

Figure E4: Recognition rates by browser in 2019 (return to p. 8) 

Notes. This fgure illustrates the dynamics of recognition rates in 2019. The Safari 
ITP 2.1 that blocks frst-party cookies was introduced on February 21 of 2019. 
However, we do not see signifcant diferences in the recognition rates. 
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Table E11: Diference-in-diferences efects of Safari privacy restrictions on recognition rates (return to p. 8) 

Safari 

(1) 
Feb 21, 2019 to Jan 31, 2019 

-5.284∗∗∗ 

(0.403) 

Recognition rate (%) 

(2) 
Feb 21, 2019 to Mar 21, 2019 

-4.693∗∗∗ 

(0.608) 

(3) 
Feb 21, 2019 to Mar 1, 2019 

-4.766∗∗∗ 

(0.601) 

After 16.899∗∗∗ 

(0.464) 
-12.162∗∗∗ 

(0.614) 
-12.876∗∗∗ 

(1.020) 

After× Safari 0.593 
(0.682) 

-1.017 
(0.827) 

-0.326 
(1.179) 

Observations 1,464 1,464 1,464 

Notes: This table reports the results of the diference-in-diferences estimation (Equation 21) investigating the efect of Safari 
policy on platform’s recognition rates. Data is at the browser-day level. Intercept is hidden for data sensitivity reasons. 

∗ ∗∗ ∗∗∗Signifcance levels: p < 0.05, p < 0.01, p < 0.001. 

Figure E5: Consumer arrival by channel type (return to p. 27) 

Notes. This fgure shows the distribution of the inter-session arrival channels that consumers in 
the personalized and non-personalized groups use. The distribution seems balanced between 
two groups, which serves as an indication that personalization may not afect actions consumers 
take outside the website. 
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Figure E6: Consumer arrival by referral type (return to p. 27) 

Notes. This fgure shows the distribution of referral URLs consumers arrive from during re-visits. 
The distribution of websites seems to be balanced between personalized and non-personalized 
group, which serves as an indication that personalization may not afect actions consumers take 
outside the website. 

Figure E7: Filtering behavior by personalized condition (return to p. 27) 

Notes. This fgure shows the distribution of the flters applied by consumers in the personalized 
and non-personalized groups. The fgure highlights that conditional on fltering, consumers 
apply similar set of flters. 

These graphs show that the personalization efect is consistent across diferent brand quintiles. 
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Table E12: Heterogeneity in product characteristics 

Observations Min Mean Median Max St.Dev. 
price ($) 35,873 4.46 431.99 349.99 2999.99 291.27 

sort rank 35,873 14.81 514.96 470.70 5809.35 254.18 

rating (1-5) 14,909 1.00 4.47 4.65 5.00 0.69 

impressions 35,873 1.10 10.46 10.43 18.35 1.79 

clicks 35,873 0.00 6.35 6.21 14.76 2.16 

add-to-cart 35,873 0.00 3.83 3.71 12.79 2.57 

quantity 35,873 0.00 1.99 1.39 11.42 2.20 

revenue 35,873 0.00 5.29 6.90 16.12 4.56 

Notes. This table reports summary statistics among dining chair products: prices, 
historical rank, rating, historical scaled impressions, clicks, add-to-cart rates, quantity 
sold, and revenue. 

Figure E8: Number of dining chairs within a product 

Notes: This fgures shows the percent 1-, 2- 4, 6-chair sets among all chairs available 
on the website. The fgure highlights that most products have either one or two 
chairs in the set, which is why there are opportunities for the repeat purchases of 
the products because typically consumers would need multiple chairs. 

Table E13: Prices, wholesale costs and profts by seller mass marketness (return to p. 45) 

(1) 
Log price ($) 

(2) 
Log wholesale cost ($) 

(3) 
Log markup (%) 

Mean cosine similarity -0.0477∗∗∗ 

(0.00810) 
-0.0499∗∗∗ 

(0.00960) 
0.0240∗∗∗ 

(0.00491) 

Observations 53,801 53,801 53,801 

Notes: This table shows the results of estimation: yj = α + βcosinej + εj . We investigate 
the correlation between the mean cosine similarity of a product and the retail price, wholesale 
cost, and the markup. We hide the intercepts for data sensitivity reasons in this table. The 
table shows that products that are more mass market (bestseller - have higher mean cosine 
similarity to other products) have lower prices, lower wholesale costs and higher markups for 
the platform. This is why profts are less impacted under privacy restrictions. 
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Figure E9: Purchased products versus existing products 

Notes: This fgure shows the distribution of products’ mean cosine similarities 
among all products and those products that are purchased at least once. The 
distributions are close showing that consumers have heterogeneous preferences and 
buy all types of products. Products with high mean cosine similarity are more mass 
market, while low mean cosine similarity products are more niche. 

Table E14: Diferences in search and purchase behavior by authentication decision 
(return to p. 36) 

Logged in 
(1) 

Cookie-recognized 
(2) 

Diference 
(3) 

p-value 
(4) 

Clicks 4.25 2.70 1.55*** 0.00 
(111.52) 

Clicked Prices ($) 173.77 177.03 -3.26*** 
(-5.96) 

0.00 

Add-to-carts 1.12 0.94 0.18*** 
(32.08) 

0.00 

Add-to-cart Prices ($) 163.79 165.21 -1.42 
(-1.40) 

0.16 

Orders 0.55 0.52 0.02*** 
(8.05) 

0.00 

Purchased Prices ($) 152.82 145.51 7.32* 
(2.23) 

0.03 

Notes: This table shows the results of the t-test between the search and purchase behavior 
of people who log in versus those who are cookie recognized. All the diferences are signifcant 
and indicate that consumers who login click and order more and are less price elastic. 
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Table E15: Diferences in search and purchase behavior by trafc source (return to p. 36) 

Display Advertising People Other Diference p-value 
(1) (2) (3) (4) 

Clicks 2.70 1.75 0.95*** 
(56.10) 

0.00 

Clicked Prices ($) 109.59 85.94 23.65*** 
(53.77) 

0.00 

Add-to-carts 0.24 0.16 0.08*** 
(35.20) 

0.00 

Add-to-cart Prices ($) 95.05 81.29 13.76*** 
(17.72) 

0.00 

Orders 0.02 0.02 -0.00*** 
(-3.49) 

0.00 

Purchased Prices ($) 83.17 76.56 6.61*** 
(3.44) 

0.00 

Notes: This table shows the results of the t-test between the search and purchase outcomes 
of consumers who arrive from display advertising and those who arrive from other sources. All 
the diferences are signifcant indicating that consumers who arrive from display advertising are 
signifcantly less price elastic and potentially have lower search costs. 

Figure E10: Diminishing returns of the data 

(a) Scaled revenue (b) Scaled proft 

Notes. This fgure shows the scaled revenue (A) and scaled proft (B) as a function of historical (pre-experiment) 
clicks made by consumers who participated in the ranking experiment. There is a positive and signifcant relationship 
between the amount of browsing history and scaled revenues and profts. However, there is diminishing returns of data 
because marginal data point brings less and less revenue/proft and both lines become fatter. Back-of-the envelope 
calculation would say that every click would bring approximately $2.69 before the economies of scale kick in and it 
drops to $0.23 after the maximum is reached. 
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Figure E11: Types of consumers arriving through diferent channels 

Notes: This fgures shows the distribution of consumer types arriving from diferent channels. 
Most channels have similar shares of consumer types except for TV, Email and Push Notifcations. 
This is intuitive because it is mostly most active ’Activated Customers’ that use these channels. 
The diference between Acquired Member and Activated Customer is the level of their activity: 
the latter is more active on the website. 

Table E16: Correlations b/w purchased product and search products’ prices by personalization condition 

Avg. Searched Price 

Price of the Purchased Product 

(1) (2) 
Personalized Product Non-personalized Product 

0.711∗∗∗ 0.490∗∗∗ 

Min. Searched Price 0.241∗∗∗ 0.009∗∗ 

Max. Searched Price 0.190∗∗∗ 0.002 

Observations 2,123 64,615 

Notes. This table shows the correlations between the purchased products’ and 
searched products’ prices by personalization status of the product. Signifcance 

∗ ∗∗ ∗∗∗levels: p < 0.05, p < 0.01, p < 0.001. 

Table E17: Main consumer metrics in the sample 

Total Clicked Added-to-cart Purchased 

Absolute 635,267 581,423 166,902 43,110 

Percent terms 100.0% 91.5% 26.3% 6.8% 

Notes. This table shows the absolute and relative (to total # of consumers) 
number of consumers who clicked, added to cart and purchased. 
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Table E18: Heterogeneity in dining chair prices 

Main Material Mean Price ($) Median Price ($) St.Dev. Price ($) % of Products 

Wood 524.26 389.99 413.96 33.33 

Wicker / Rattan 523.81 449.99 354.77 1.86 

Upholstered 499.86 379.99 398.71 54.89 

Metal 300.24 222.00 248.16 2.92 

Plastic / Acrylic 272.75 217.99 210.96 7.00 

Notes. This table shows the heterogeneity dining chair prices across diferent chair materials. 

Figure E12: Change in ranks by brand sizes 

Notes. This fgure illustrates the relationship between brand size and the changes in 
the rankings when product is shown as part of the personalized rankings. Brand size 
is defned as the total number of products ofered by a brand. The x−axis represents 
the quintiles of brands categorized by their product count. The y-axis represents 
the diferences in product ranks in personalized impressions versus non-personalized 
impressions. The numbers inside orange circles indicate the median rank change for 
each quintile. 
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Figure E13: Change in pages by brand sizes 

Notes. This fgure illustrates the relationship between brand size and the changes 
in the pages when product is shown as part of the personalized rankings. Brand 
size is defned as the total number of products ofered by a brand. The x−axis 
represents the quintiles of brands categorized by their product count. The y-axis 
represents the diferences in product ranking pages in personalized impressions 
versus non-personalized impressions. The numbers inside orange circles indicate the 
median page change for each quintile. 

Table E19: Jumps in the search process (return to p. 26) 

Standardized sales 

(1) 
∆prices 
6.588∗∗∗ 

(0.560) 

(2) 
∆cosine similarity 

0.866∗∗∗ 

(0.019) 

(3) 
∆width 

-0.040∗∗∗ 

(0.012) 

(4) 
∆depth 

-0.127∗∗∗ 

(0.022) 

Purchased -51.432∗∗∗ 

(3.163) 
1.202∗∗∗ 

(0.149) 
-0.617∗∗∗ 

(0.028) 
-0.769∗∗∗ 

(0.044) 

#Ratings -13.402∗∗∗ 

(0.609) 
-0.470∗∗∗ 

(0.022) 
-0.013 
(0.016) 

0.067∗∗∗ 

(0.025) 

St.Dev. Ratings -9.507∗∗∗ 

(0.816) 
0.085∗∗∗ 

(0.028) 
-0.021∗∗∗ 

(0.007) 
0.046∗∗∗ 

(0.011) 

Rating -7.697∗∗∗ 

(1.246) 
-0.021 
(0.044) 

-0.103∗∗∗ 

(0.010) 
-0.115∗∗∗ 

(0.016) 

Intercept 

Customer FE 
N 

264.160∗∗∗ 

(6.107) 
Yes 

4,798,732 

18.438∗∗∗ 

(0.215) 
Yes 

2,917,274 

2.429∗∗∗ 

(0.051) 
Yes 

820,034 

2.847∗∗∗ 

(0.079) 
Yes 

826,132 

Notes: We calculate the step size in quantitative attributes (e.g. price, cosine similarity 
with the previously clicked product, width and depth of the chair): the diference 
between the attribute value of the previously searched product and that of next product. 
|∆yijt| = |yijt − yijt−1| = α + β1salesijt−1 + β2purchasedijt−1 + β3#ratingsijt−1 + 
β4st.dev.ratingsijt−1 + β5ratingijt−1 + εijt−1, where i is the consumer, jt is the product 
searched at search instance t, y-variables are absolute step size between attribute value of 
the previously searched product and the current one, salesijt − 1 is the standardized sales 
of product searched at search instance t − 1 (previously searched one), purchasedijt − 1 is 
the indicator for whether consumer i purchased product j searched at t − 1, #ratingsijt -
number of ratings product j carries, st.dev.ratingsijt - standard deviation in the ratings 
of the previously searched product and rating is the absolute rating of the product that we 
control for. 
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Figure E14: Convergence patterns in consumer search 

(a) chair height (b) chair depth 

(c) number of chairs in a set (d) seat width 

Notes. This fgure shows that consumers exhibit spatial learning behavior 
documented in Bronnenberg, Kim and Mela (2016). The x-axis shows consumer’s 
search decile (progression), and y-axis shows the absolute deviation of the searched 
product attribute from the chosen (purchased) product’s attribute. 

Figure E15: Sessions after Chrome Display Advertising arrival 

Notes. This fgure illustrates the number of sessions consumers search for after 
arriving from Chrome Display Advertising channel. Median consumer keeps 
searching for additional three sessions after arriving from the advertising channel. 
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Figure E16: Session order at Chrome Display Advertising arrival 

Notes. This fgure illustrates the session order at which consumers arrive from 
Chrome display advertising. Median consumer who arrives from Chrome display 
advertising, does so at session number three. 

Figure E17: Price inelastic consumers by state 

Notes. This fgure illustrates the implied price elasticities based on consumers’ 
previous clicking and purchase behavior. 
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Figure E18: Total clicks by state 

Notes. This fgure illustrates the number of total clicks based on consumers’ previous 
clicking and purchase behavior. 

Figure E19: Days of search by state 

Notes. This fgure illustrates the days of search based on consumers’ previous 
clicking and purchase behavior. 
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Figure E20: Tenure on the website 

Notes. This fgure illustrates the distribution of days products existed on the 
website. 
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F. Belief updating 

F.1. Prior mean updating 

Table F20 below gives an intuition behind belief updating process that occurs as a result of 

Gaussian process specifcation. Suppose consumer clicked on product j and observed true utility uj . 

Given the observed utility, the model allows the consumer to update her beliefs about the remaining 

products (Equation 29). Consumer frst calculates how much the observed utility from product j 

deviates from her prior belief (uj − µ(Xj )) and then updates posterior beliefs about other products 

according to the weights implied by Gaussian distribution. 

κ(X−j , Xj )′ (X−j|j ) = µ(X−j ) (29)(uj − µ(Xj )) +µ 
κ(Xj , Xj ) + σ2 

ξ + σ2 
ε 

posterior means prior means deviation of observed utility from the prior 
weights 

Table F20: Posterior updates of mean utilities 

Case Updating Explanation 

uj = µ(Xj ) µ ′ (X−j|j ) = µ(X−j ) observed utility is equal to the prior, and, consequently, 
posteriors are not updated. 

uj > µ(Xj ) and κ(X−j , Xj ) high µ ′ (X−j|j ) > µ(X−j ) if products X−j and Xj are highly related, and 
consumers got positive utility signal, then they will 
update positively the posterior mean on X−j . 

uj < µ(Xj ) and κ(X−j , Xj ) high µ ′ (X−j|j ) < µ(X−j ) if products X−j and Xj are highly related, and 
consumers got negative utility signal from X−j , then 
they will think that the products similar to the observed 
one have low utility and will decrease posterior mean 
utility beliefs. 

uj > µ(Xj ) and κ(X−j , Xj ) low µ ′ (X−j|j ) ≤ µ(X−j ) if products X−j and Xj are not quite related or 
negatively related, then getting positive signal from Xj

either does not afect the beliefs about the dissimilar 
products or may decrease them. 

uj < µ(Xj ) and κ(X−j , Xj ) low µ ′ (X−j|j ) ≥ µ(X−j ) if products X−j and Xj are not quite related or 
negatively related, then getting negative signal from Xj

either does not afect the beliefs about the dissimilar 
products or may increase them. 
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F.2. Prior covariance updating 

In the model, consumer updates both the posterior mean beliefs about product qualities, as well 

as the strength of the relationship between products. The updating process follows Equation 30. 

Every click on a product may reduce uncertainty about product qualities, which is refected in the 

posterior covariance matrix. Table F21 gives an intuition for diferent updating scenarios. 

total uncertainty 
about product j payof 

κ ′−j|j = κ−j|j − κ−j,j (κj,j + σξ 
2 + σε 

2) −1κT 
−j,j (30) 

posterior covariance matrix prior covariance matrix reduction in uncertainty 

Table F21: Posterior updates of covariance matrix 

Case 
κ−j,j are zeros or low 

Updating 
κ ′ −j|j = κ−j|j 

Explanation 
if observed product Xj is unrelated to product X−j , i.e. 
κ−j,j = 0 then corresponding posterior covariances of 
product −j with other products do not change. 

κ−j,j are high κ ′ < κ−j|j−j|j if observed product Xj is highly related (similar) to 
product X−j , i.e. κ−j,j is high, then corresponding 
posterior covariances of product −j with other products 
will decrease. The intuition is that observing a 
product decreases uncertainty about the payofs of other 
products similar to the observed one. 
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G. Lower-dimensional product representation: embeddings 

We use Deep Learning, namely Convolutional Neural Networks (CNNs), to construct image 

similarity. The goal of the model is to represent each product as a numerical vector with 512 × 1 

dimensionality. To train the model, we need product images and ground truth training data that 

has true labels of product similarity. For training, we use more than 1.5 million images generously 

provided by Wayfair. Each product has multiple pictures associated with it (Figure G21) and this 

provides ground truth labels. That is, if the images correspond to the same product, then in the 

pairwise comparison the label is one, and zero otherwise. The goal of the trained Convolutional 

Neural Network is to project the images to a lower dimensional space in a way that would place 

images of the same product close together, while all the dissimilar images will be located at a distance. 

Figure G21: Diferent images of the same product 

Figure G22 illustrates this: the goal is to learn a lower-dimensional representation of the image 

such that the image in Panel (A) and the matched image of the same product in Panel (B) map to 

the same point in the embedding space, while image in Panel (C) which corresponds to a completely 

diferent product is separated by at least a margin m in the embedding space. 

Formally, we use the Convolutional neural networks (CNNs) (see Hadsell, Chopra and LeCun 

(2006) and Bell and Bala (2015) for more details). A convolutional neural network is a function f 

that maps each image I into an embedding position x, given parameters θ: fθ : I → x. The goal 

of CNN is to solve for the parameter vector θ such that the produced embeddings x are such that 

similar images are placed nearby, while dissimilar images are more distant. 

Suppose there are three images, Ia, Ib, Ic. Images Ia and Ib are two diferent images of the same 

object (Panels (A) and (B) of Figure G22), while image Ib and Ic correspond to two completely 

diferent objects (Panels (B) and (C) of Figure G22). Via CNN fθ, the images are mapped into the 

embeddings xa, xb, xc. If the model is trained well and produces ’good’ embeddings, then the correct 

(positive) pair xa and xb should be close together, while the incorrect (negative) pair xb and xc is 

further apart. 

The objective function for this kind of task is called contrastive loss and was proposed by Vedaldi, 

Jia, Shelhamer, Donahue, Karayev, Long and Darrell (2014). We minimize the loss function defned 
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Figure G22: Idea behind embeddings 

(a) Image Ia (b) Image Ib 

(c) Image Ic 

Notes: The fgure illustrates the idea behind image embeddings. Products in Panel 
(A) and (B) are very similar, and the model’s task is to put these products close 
in the embedding space. Meanwhile, product in Panel (C) should be more distant 
from (A) and (B) in the embedding space. 

as 

L(θ) = Lb(xa, xb) + Lc(xb, xc) (31) 
xa,xb xb,xcPenalty if similar images Penalty if dissimilar images 

are far away are nearby 

where Lb(xa, xb) = ||xa − xb||22 and Lc(xb, xc) = max{0, m2 − ||xb − xc||22}. The objective (loss) 

function consists of two parts: Lb(xa, xb) penalizes a positive pair (xa, xb) if the embeddings of the 

images of the same product are too far apart, and Lc(xb, xc) penalizes a negative pair (xb, xc) if the 

images of two diferent items are closer than the margin m. 

We minimize the objective function in Equation 31 with respect to parameters θ using stochastic 

gradient descent with momentum (Krizhevsky, Sutskever and Hinton (2017), Bottou, Curtis and 

Nocedal (2018)): 
∂L 

v(t+1) ← µ · v(t) − α · (θ(t)) (32)
∂θ 

θ(t+1) ← θ(t) (t+1)+ v (33) 

where v is the momentum sequence, µ ∈ [0, 1) is the momentum and α ∈ [0, ∞) is the learning 

rate. For computational reasons, to efciently compute the loss function L and the gradient 
∂L , we 
∂θ 

follow Hadsell, Chopra and LeCun (2006). Their approach is to construct a siamese network, which 

is the two copies of the CNN that share the same parameters θ. The network takes as an input two 

images I1, I2, θ and the indicator variable for whether the images are a positive pair (y = 1) or a 

negative pair (y = 0), and outputs the loss function L (Figure G23). 
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Figure G23: Siamese network 

Notes. This fgure illustrates the architecture of the Deep Neural Network that we 
used to create image embeddings. the Source: Bell and Bala (2015). 

For training, we used more than 1.5 million images of approximately 320,000 products. We took 

all images available for ffty54 thousand dining chair products and supplemented them with products 

from other furniture categories, e.g. sofas, ofce chairs, ottomans, beds. Using products from other 

categories ensures better training of the image recognition model. 

Diferent images of the same product constitute a positive pair, and the model should deliver 

embeddings (vectors) that are similar in some distance metric, e.g. cosine similarity. For negative 

examples, for each product, we sampled other products from the same category and other categories. 

The output of the model is the 512 × 1 vector that characterizes each product. Next, we can 

calculate cosine similarities between diferent products’ vectors to identify how similar or dissimilar 

products are. Figures G24 and G25 show some examples of products that have high cosine similarity 

(> 0.9) and the examples of dissimilar products (< 0.1), where we calculated cosine similarities using 

the model output. Figure G26 a condensed output of the model in two-dimensional space, where we 

used UMAP to project 512 × 1 images into two-dimensional space. 

Figure G24: Examples of products with high cosine similarity 

(a) Cosine similarity: 0.9294 (b) Cosine similarity: 1.0000 

Notes. This fgure shows the examples of the products with high cosine similarities. Typically, products that have 
cosine similarity higher than 0.9 are visually very similar. 

54At each point in time, there are approximately thirty thousand dining chairs on the website, but historically there 
were alltogether ffty thousand chairs and we use all the available pictures. 
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Figure G25: Examples of products with low cosine similarity 

(a) Cosine similarity: -0.0001 (b) Cosine similarity: 0.0074 

Notes. This fgure shows the examples of the products with low cosine similarities. Typically, products that have cosine 
similarity lower than 0.5 are visually very diferent. 

Figure G26: Output of embedding images in two-dimensional space (return to p. 37) 

Modern 

1 

Traditional 2 

Glam 

3 

Farmhouse 
4 

Notes: This fgure shows a partial output of the image embedding model. The actual image emebdding is 512 × 1 
vector. We used UMAP (Uniform Manifold Approximation and Projection) to reduce the dimensionality to get 
two-dimensional vectors. 
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H. Personalized rankings algorithm 

On the ranking pages, Wayfair uses a sequential recommendation model to learn most recent 

consumer preferences and to provide recommendations that better match consumer tastes. The input 

to the model is simple: it is a sequence of items that a consumer has browsed previously within 

a category. During the sample period, the algorithm leveraged only within-category browsing and 

trained separate models for each product category. Model architecture is depicted on Figure 

I29. The input to the algorithm is an ordered sequence of consumer searches. First, the model 

learns similarity between diferent products and represents each product in a numerical vector form, 

i.e. item embedding. Similarly, the information on the order of searches is stored in the positional 

embeddings. Next, combined lower-dimensional representation of consumer searches stored in the item 

and positional embeddings is passed into subsequent layers of the model. There is a self-attention layer 

that learns the relationship between diferent items and decides which lower-dimensional attributes 

to store in the item embeddings. Next, the resulting summed embeddings are passed through the 

fully-connected layer with a sigmoidal (logistic) activation and binary cross-entropy loss. The fnal 

output of the model is the list of scores for all items in the training set. These scores are then used to 

provide the top n recommendations. The recommended products can include both previously-unseen 

and previously-seen products. See Mei, Zuber and Khazaeni (2022) for more details. 

Figure H27: Architecture of the personalization algorithm 

Notes: This fgure shows the architecture of the personalization algorithm used by Wayfair. The input to the algorithm 
is an ordered sequence of consumer’s browsing history, e.g. consumer browsed for eight chairs. This sequence of searches 
is encoded into item and positional embeddings and the result if passed through the multi-level perceptron layer. The 
fnal output of the model is a list of scores for all items in the training set. Next, products are ranked according to the 
scores to provide top n recommendations. Source: Mei, Zuber and Khazaeni (2022). 
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I. Recommendations on the product pages 

On the product pages, consumers will see additional product recommendations. These 

recommendation widget is called compare similar items. It consists of fve products, the frst 

product is the anchor product itself, and there are four additional products. On Wayfair, consumers 

can click on a product, add it to cart, add it to favorite board and fnally purchase. 

To create these recommendations, Wayfair uses data on how consumers co-purchase, co-add-to-

cart and co-click the products. First, they create a bipartite random graph that calculates the visit 

counts to every product, using consumer clicks and add-to-carts. Next, the algorithm simulates a 

random walk to predict which products consumers are more likely to click on. 

Figure I28: Building Bipartite graph algorithm 

Notes: The platform builts the bipartite graph at the category level. The random 
walk starts by initializing the visit counts for every SKU to zero. 

Figure I29: Simulation of random walk 

Notes: During the random walk process, we record the visit count for all SKUs 
in the graph. The top K SKUs with the highest visit count will become the fnal 
recommendation. 
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J. Model fit and validation 

This section shows the results of the model ft analysis. First, we test the model ft by comparing 

the observed and predicted awareness set sizes, i.e. the number of products consumers viewed. Figure 

J30 shows the observed awareness set size on the x-axis and the predicted measure on the y-axis. 

The size of the circle indicates the number of people with a given awareness set size. The model 

predicts the awareness set particularly well, which ensures some credibility in the model. 

We chose awareness set size as the model ft measure because it captures one of the main aspects 

that we model: viewing. If the model predicts the awareness sets well that means it captures search 

behavior sufciently well. 

Figure J30: Model ft: awareness set size (return to p. 38) 

Notes: This fgure plots the simulated and observed data moment: size of the 
consumers’ awareness sets. The size of the dot is proportional to the number of 
consumers in each group. The orange line is the the 45-degree line. 

Next, we check the model ft on other consumer-level and seller-level metrics. Table J22 shows 

that the model can predict the number of clicks, prices searched and the ranking page position of the 

purchased product, and the share of diferent sellers well. 

Table J22: Model ft: consumer outcomes 

Data Predicted 
Consumers 

# clicks 3.42 3.17 
awareness set size 59.46 60.32 
price searched ($) 
position purchased 

$234 
49 

$239 
47 

Sellers 

share of 10th percentile sellers 
share of 90th percentile sellers 

100%1 

100%1 
95% 
97% 

1 Share normalized to 100% for data sensitivity reasons. 
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Finally, we validate the model using the data from Chrome privacy policy that was introduced in 

2020 (Appendix A). The model predicts the number of times consumer leaves the product page and 

re-visits the ranking page. We chose this metric because it captures the main components of the 

model, i.e., viewing products and clicking and then navigating back to the ranking page. The orange 

line on Figure J31 shows the increase in the number of re-visits of ranking page during the Chrome 

event. The predicted and observed data moments match well, further validating the model. 

Figure J31: Model ft: search behavior during Chrome SameSite updates (return to p. 38) 

Notes: This fgure plots the simulated and observed data moment: the increase 
in the ranking page re-visits during Chrome event. The red line corresponds to 
the observed data and blue line is the predicted data moment. The shaded area 
indicates the 95% confdence interval across simulation draws. 
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K. Counterfactual Results 

Figures K32 and K33 show the comparison between two approaches to simulating Chrome 

restrictions. In Approach 1, we fragment the data and re-train the personalization algorithms using 

fragmented data. Next, we re-train platform’s personalization algorithm using the fragmented data. 

This is the approach that we report in the main text. 

In Approach 2, we assume that Chrome will indicate aggregate clustering group for the consumer 

interests, e.g., modern style. To simulate that, frst, we segment consumers into clusters (styles) of 

interest based on their browsing history. We calculate the number of clicked products of a certain style 

among the viewed ones and classify consumer into a cluster that received highest click-through-rate. 

Next, we show personalized recommendations of a style of interest mixing small and large sellers’ 

products in the rankings. 

Both approaches give qualitatively similar results but we report the Approach 2 in the Appendix 

because it makes a strong assumption about the kind of information that is revealed to to the 

platforms. Moreover, we apply a simple heuristic approach and show a mix of small and large sellers’ 

products. In reality, the platform might use a complete diferent algorithm given the identifed 

clusters. Approach 1 is a scenario that is more realistic to happen and requires less heuristic choices 

compared to Approach 2. 

Figure K32: Comparison of two approaches for Chrome counterfactuals: consumer welfare 

Notes: This fgure compares the counterfactual welfare measures between 
two approaches of simulating Chrome restrictions. 
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Figure K33: Comparison of two approaches for Chrome counterfactuals: seller revenue 

Notes: This fgure compares the counterfactual seller revenue measures 
between two approaches of simulating Chrome restrictions. 

Table K23: Counterfactual results (return to p. 42) 

(1) 

’Full’ data vs Bestseller 

(2) 

7 day vs ’Full’ data 

(3) 

Chrome 2024 vs ’Full’ data 

(4) 

Algorithm vs ’Full’ data 
Consumer 

∆ welfare ($) +25.3 vs +16.4 (∆ = $8.9) -4.78 -6.98 -3.06 

purchase probability +12.09% -17.52% -24.65% -23.45% 

match value +48.70% -33.45% -54.11% -30.36% 

scrolling cost savings +38.37% -43.24% -32.53% -35.42% 

clicking cost savings +0.83% -5.79% +11.28% -10.77% 

Seller 

revenue (10th percentile) +10.23% -5.64% -8.59% -2.34% 

conversion prob (10th percentile) +1.64% -2.30% -2.84% +1.23% 

revenue (90th percentile) +0.24% +0.28% +0.31% +0.12% 

conversion prob (90th percentile) +1.00% +1.5% +1.10% +0.78% 

Platform 

∆revenue (%) 

∆proft (%) 

+2.19% 

+1.25% 

-1.15% 

-0.21% 

-1.94% 

-0.39% 

-0.82% 

-0.13% 

Notes. This table reports the full counterfactual simulation results. Column (1) shows the changes in consumer, seller and platform outcomes under 
personalization using full data versus non-personalized rankings. Column (2) compares using Safari-style 7 day cookie reset policy with the full personalization 
case. Column (3) compares forthcoming Chrome 2024 policy to the full personalization. Column (4) compares the proposed algorithm with the full data 
scenario. 
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