What Makes Players Pay? An Empirical Investigation of In-Game Lotteries

Tomomichi Amano Harvard Business School Andrey Simonov Columbia Business School & CEPR

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

November 14, 2024 FTC Microeconomics Conference Lotteries in Video Games: Loot Boxes

An in-game (virtual) item that a user can purchase to receive a randomized reward

Different from other randomness in video games

- Purchasable
- A stand-alone choice
- ► A prominent source of revenue for video games. In 2020:
 - Global revenue of \$15B (\sim 10% of the gaming industry)
 - ▶ Used in ~58% of highest-grossing iPhone/Android mobile games

Loot Boxes Example: FIFA Ultimate Team Mode

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Two Views on Loot Boxes

- 1. Enhance gaming experience
 - Voluntary and useful in the game, complements the gameplay
 - Another strategic dimension in the "game of skill"
 - "Reflects the real-world excitement and strategy of building and managing a squad" (EA CEO re: Ultimate Team Mode)

Two Views on Loot Boxes

1. Enhance gaming experience

- Voluntary and useful in the game, complements the gameplay
- Another strategic dimension in the "game of skill"
- "Reflects the real-world excitement and strategy of building and managing a squad" (EA CEO re: Ultimate Team Mode)
- 2. Gambling embedded into video games
 - ► A lottery (for real money) to obtain a prize
 - Consumers get direct utility from resolving uncertainty and collecting items
 - Similar problem gambling as in other contexts
 - \blacktriangleright Addiction, impulsive consumption, other behavioral mechanisms \rightarrow leads to over-spending
 - A substantial share of consumers are minors

Regulation of Loot Boxes: No Consensus

Banned due to being gambling (e.g. Belgium)

- Partially banned or regulated (e.g. Japan, China)
- Determined not gambling and allowed (e.g. Poland, New Zealand)

Inquiries into loot boxes in major jurisdictions

- US: A 2019 Workshop at the FTC
- UK: A 2020 Government Call for Evidence
- EU: A 2023 European Parliament's Resolution

More

A Stand-Alone Product or Part of the Game of Skill?

- In March 2022, the Dutch Council of State overruled the district court, making EA's Ultimate Team mode legal Ruling
- "…obtaining and opening the [randomized] packs is not an isolated game. They are part of a game of skill […] used for game participation […] Because the packs are not a stand-alone game, they are not a game of chance and do not require a license"

- 1. What drives demand for loot boxes?
 - In-game functional value/complementarity with the game?
 - A direct utility from opening a loot box (a stand-alone product; includes habits & other behavioral mechanisms)?

- 1. What drives demand for loot boxes?
 - In-game functional value/complementarity with the game?
 - A direct utility from opening a loot box (a stand-alone product; includes habits & other behavioral mechanisms)?
- 2. What is the role of taste heterogeneity?
 - Video games have "whales" a small share of players responsible for most expenditures

- ▶ Do 🐳 open loot boxes for other reasons than regular players?
- Externalities for product design?

- 1. What drives demand for loot boxes?
 - In-game functional value/complementarity with the game?
 - A direct utility from opening a loot box (a stand-alone product; includes habits & other behavioral mechanisms)?
- 2. What is the role of taste heterogeneity?
 - Video games have "whales" a small share of players responsible for most expenditures

- ▶ Do 🐳 open loot boxes for other reasons than regular players?
- Externalities for product design?
- 3. What are the implications of:
 - A full loot box ban
 - A ban on paid loot boxes
 - Spending limits

- 1. A simple model to separate out complementary and direct values of loot boxes
- 2. Data from a Japanese mobile puzzle game
 - Describe consumers' behavior
 - Model-free evidence of the source of loot box value
- 3. Estimate an empirical model of gameplay with loot boxes
 - Forward-looking players that accumulate inventory
 - A two-step estimator using the terminal action property
- 4. Characterize consumer tastes, evaluate product design and policy counterfactuals
 - Measure the relative importance of complementarity
 - Evaluate alternative game and loot box designs
 - ► Measure the effects of potential regulatory actions

A Toy Model

- A consumer considers playing a video game with loot boxes. She makes two decisions:
 - ▶ Do I play the game, $Y_G \in \{0, 1\}$?
 - ▶ Do I open a loot box, $Y_L \in \{0, 1\}$?
- Playing the game, $Y_G = 1$, gives

$$U_G(Y_G = 1, Y_L) = \alpha + I(\min|Y_L), \tag{1}$$

• Opening a loot box, $Y_L = 1$, gives

$$U_L(Y_L=1) = \rho p, \qquad (2)$$

and weakly increases the probability of winning at the game, $\Pr(\min|1) = \Pr(\min|0) = 0$

Two Sources of Loot Box Tastes

Two reasons to open a loot box:

- 1. Higher expected win utility, [Pr(win|1) Pr(win|0)]
 - Open loot boxes more when the functional value is higher
- 2. Persistent taste for opening loot boxes,
 - Want to open loot boxes regardless of functional value
- can capture various mechanisms
 - Direct utility from uncertainty
 - Habit formation: positive state dependence as part of
 - Variable-ratio schedule of reinforcement: higher if higher variance of the draws

Empirical Context: A Japanese Mobile Video Game

- A free-to-play puzzle mobile game, run April 2015-July 2019
 - The mechanics is "match-three puzzle" (e.g. Candy Crush)
- Core features:
 - A sequence of 173+ stages of increasing difficulty
 - A player accumulates an inventory of items that help to complete stages ("divers"), vertically differentiated ("rarity")
 - Chooses up to four divers before each stage play
 - Divers are accumulated either through play/points or through opening loot boxes
 - ▶ Loot boxes can be opened between stage plays using in-game currency, acquired through play or pay (~ 3.5 \$)
 - A player can open 11 loot boxes at once (for the price of 10)

Examples of Game Visuals

うせん 前 (中国) (日) (日)

Game Data

- Access to complete data logs
 - $\blacktriangleright \sim 2.5 {\rm M}$ players
 - User play and loot box opening decisions, play and loot box outcomes, inventories, currency stocks, etc

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Summary Statistics

	Min	Mean	Median	Max	SD	Total
# of actions	1	106.31	10	119,007	540.61	267, 521, 534
- Played main stage games	0	38.44	4	28,586	115.67	96,719,354
- Played event games	0	48.16	0	83,805	378.10	$121,\!186,\!908$
- Opened rare lootboxes	0	7.88	3	6,204	30.54	19,829,420
- Opened normal lootboxes	0	11.84	2	24,426	58.93	29,785,852
Max main stage achieved	0	18.54	4	173	32.27	-
Win share: main stage games	0	0.94	1	1	0.14	-
Win share: event games	0	0.74	0.84	1	0.29	-
Opened 11 rare lootboxes at once	0	1.02	0	3,256	8.45	2,559,307
In-game currency received	0	78	18	178.698	457.52	196, 267, 039
- through gameplay	0	72.80	18	128,831	359.30	183, 187, 916
- through a purchase	0	5.20	0	49,867	119.89	$13,\!079,\!123$
In-game currency spent	0	66.76	9	$178,\!606$	442.07	168,001,147
- got through gameplay	0	61.58	9	128,739	340.72	$154,\!962,\!617$
- got through a purchase	0	5.18	0	49,867	119.75	$13,\!038,\!530$
Sessions	1	21.21	1	9,102	103.80	53,368,821
Unique days played	1	11.42	1	1,548	45.14	28,744,507
Length of play (in calendar days)	0	38.19	0	1,553	137.29	-

Table 1: Summary statistics across users.

Actions correspond to playing the game or opening lootboxes. A session is defined as a sequence of actions that are no more than 1 hours apart.

Inequality in the Expenditures

Game purchases are highly concentrated:

- ▶ 90% of money spent by 1.5% of players (🐳)
- ▶ The highest: \sim \$33K by one user, \sim \$3K in one session

"Organic" in-game currency expenditures are much less concentrated:

- ▶ 90% of spending by 31.5% of players
- Similar for gameplay

95.7% of money spent on loot boxes

Descriptives: Game Progress by Stage

- ▶ 37K players reach stage 173
- Every four stages there is a harder "boss" stage

Figure 4: The Number of Plays and Unique Players Present at Each Stage

- Stage plays - Unique players

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Descriptives: Win Probability vs. Loot Box Opening

- Based on people who reached stage 173
- Lower win probability in later stages
 - ▶ The first (96%) vs. final (48%) rounds
- Players more likely to open loot boxes and spend currency when the game is harder (elasticity $\sim 1\%$)

egression 🔪 Game Progress by Stag

Descriptives: Players Reaching Stage 173 vs. All Players

- Probability to open at least one rare loot box - Probability to spend at least some dream drops - Stage win probability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Model-Free Evidence: Effects of Loot Box Outcomes

 \blacktriangleright Functional value of loot boxes \rightarrow "good" realizations should increase the utility from gameplay

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

- ► A stronger effect if larger impact on game performance
 - Added to the low- vs. high-quality inventories

Model-Free Evidence: Effects of Loot Box Outcomes

- ► Functional value of loot boxes → "good" realizations should increase the utility from gameplay
- ► A stronger effect if larger impact on game performance
 - Added to the low- vs. high-quality inventories
- Use loot box outcome as an instrument for inventory quality, controlling for the inventory in t 1

$$I(a_{it} = \text{loot box}|a_{i,t-1} = \text{loot box}) = bR_{it} + \kappa_i + \kappa'_{s,R_{it-1}} + \xi_{it}$$

where R_{it} is the total rarity of the top-4 divers in the inventory
 Include user i and stage s by rarity in t 1 fixed effects
 Standard errors clustered two-way, on the user and stage levels

Effects of Inventory Quality on Loot Box Probability: Non-whales

	Dependent	variable: $I(a_{it} \in \{2,3\} a_{i,t-1} \in \{2,3\})$
	All	
	(1)	
II. Non-whales:		
\hat{R}_{it} (IV: rarity _{Lit-1})	-0.1725^{***}	
	(0.0513)	
First stage $(R_{it} \sim \text{rarity}_{L_{it-1}})$	0.1562^{***}	
	(0.0383)	
Average $I(a_{it} \in \{2,3\} a_{i,t-1} \in \{2,3\})$	0.6439	
\mathbb{R}^2	0.3236	
Number of observations	$14,\!563,\!179$	

Effects of Inventory Quality on Loot Box Probability: Non-whales

	Dependent variable: $I(a_{it} \in \{2,3\} a_{i,t-1} \in \{2,3\})$				
	All	$R_{it-1} < 16$	$R_{it-1} \ge 16$		
	(1)	(2)	(3)		
II. Non-whales:					
\hat{R}_{it} (IV: rarity _{Lit-1})	-0.1725^{***}	-0.0880***	-0.8094***		
	(0.0513)	(0.0075)	(0.2168)		
First stage $(R_{it} \sim \operatorname{rarity}_{L_{it-1}})$	0.1562^{***}	0.4458^{***}	0.0320^{***}		
	(0.0383)	(0.0380)	(0.0075)		
Average $I(a_{it} \in \{2,3\} a_{i,t-1} \in \{2,3\})$	0.6439	0.5471	0.7141		
\mathbb{R}^2	0.3236	0.4155	0.2552		
Number of observations	$14,\!563,\!179$	$6,\!116,\!584$	8,446,595		

Effects of Inventory Quality on Loot Box Probability: 🐳

	Dependent varial	ble: 1
	All	
	(1)	
III. Whales:		
\hat{R}_{it} (IV: rarity _{Lit-1})	-0.0080	
	(0.0363)	
First stage $(R_{it} \sim \operatorname{rarity}_{L_{it-1}})$	0.0400^{**}	
	(0.0171)	
Average $I(a_{it} \in \{2,3\} a_{i,t-1} \in \{2,3\})$	0.8025	
\mathbf{R}^2	0.1537	
Number of observations	3,856,246	

ependent variable: $I(a_{it} \in \{2,3\} | a_{i,t-1} \in \{2,3\})$ All (1)

Effects of Inventory Quality on Loot Box Probability: 🐳

	Dependent	Dependent variable: $I(a_{it} \in \{2,3\} a_{i,t-1} \in \{2,3\})$				
	All	$R_{it-1} < 16$	$R_{it-1} \ge 16$			
	(1)	(2)	(3)			
III. Whales:						
$\hat{R}_{it} \; (\text{IV: rarity}_{L_{it-1}})$	-0.0080	-0.0313^{***}	-0.0212			
	(0.0363)	(0.0040)	(0.0952)			
First stage $(R_{it} \sim \operatorname{rarity}_{L_{it-1}})$	0.0400**	0.4238^{***}	0.0152^{**}			
	(0.0171)	(0.0435)	(0.0061)			
Average $I(a_{it} \in \{2,3\} a_{i,t-1} \in \{2,3\})$	0.8025	0.5571	0.8269			
\mathbb{R}^2	0.1537	0.2229	0.1238			
Number of observations	$3,\!856,\!246$	$349,\!426$	3,506,820			

Play Utility

Consider consumer i who reached stage s by time t

- ▶ Four choice options a_{it}: play stage s (a_{it} = 1), open 1/11 loot box(es) (a_{it} = {2,3}), or leave the game forever (a_{it} = 0)
- State variables: stage s_{it}, diver rarity in inventory R_{it}, currency stock c_{it}, whether the current stage was lost q_{it}, state dependence d_{it}, loot box prices {p¹_{it}, p¹¹_{it}}
- The utility of playing is

$$u(a_{it}=1) = \alpha_{G,s_{it}} \qquad q_{it} \tag{3}$$

where

- $\alpha_{G,s_{it}} = \alpha_{G,s}$ is utility from playing stage s
- captures the disutility of having lost the current stage and having to replay it

Win Probability

The win probability is determined by

$$\Pr(\min|s_{it}, q_{it}, D_{it}) = \zeta_{1,s,q} + \zeta_{2,s,q} * R_{it} + \zeta_{3,R_{it}}$$
(4)

where

- *R_{it}* is the summed up rarity of top-4 divers in the inventory *D_{it}* of the player (from 8 to 24, 17 combinations)

One Loot Box Opening Utility

- ▶ If *i* opens a single loot box L_s , $a_{it} = 2$, with Pr_s get diver $d \in D_{L_s}$
 - Updating the inventory $D_{i,t+1} = \{D_{it}, d\}$ and the implied R_{it+1}

Gets utility

$$u(a_{it}=2) = \alpha_{L,1} \qquad \mathbb{1} \quad p_{it}^1 > c_{it} \quad \times \quad p_{it}^1 \quad c_{it} \quad + \eta d_{it}$$
(5)

where

α_{L,1} is the direct utility of opening one loot box
 is the (dis)utility of spending money on in-game currency
 η is state.dep. coef on d_{it} = 1 (a_{i,t-1} ∈ {2,3})

Eleven Loot Boxes Openings Utility

Separate utility of consumer *i* opening eleven loot boxes, $a_{it} = 3$

$$u(a_{it} = 3) = \alpha_{L,11} \qquad \mathbb{1} \quad p_{it}^{11} > c_{it} \quad \times \quad p_{it}^{11} \quad c_{it} \quad + \eta d_{it}$$
(6)

where

• $\alpha_{L,11}$ is the direct utility of opening eleven loot box

• The utility of quitting the game forever, $a_{it} = 0$, is normalized to zero

Player's Objective

▶ A forward looking player chooses a_{it} $\forall t$ to maximize

$$\max_{\{a_{it} \forall t\}} E \sum_{t=1}^{\infty} \}^{t-1} u_{it}(a_{it}, O_{it};) + \varepsilon_{iat}$$
(7)

• $O_{it} = R_{it}, c_{it}, s_{it}, q_{it}, d_{it}, p_{it}^{1}, p_{it}^{11}$ are state variables Transitions are preference parameters

 \triangleright ε_{iat} are player, choice, time specific idiosyncratic shocks

Writing out as a value functional using Bellman equation:

$$V(O_{it},\varepsilon_{iat}) = \max_{a_{it} \in \{0,1,2,3\}} u(a_{it}) + \varepsilon_{iat} + E_{O',\varepsilon'|O_{it},a_{it}} V O',\varepsilon'$$
(8)

► Boils down to simple multinomial logit if we know $E_{O', \varepsilon' | O_{it}, a_{it}} V(O', \varepsilon')$

Estimation

- Use a two-step estimator [Hotz and Miller, 1993] leveraging terminal action property [Arcidiacono and Miller, 2011]
 - 1. Estimate the conditional choice probability $(CCP_0(O_{it}) = CCP(a_{it} = 0|O_{it}))$ of the terminal action, $a_{it} = 0$, and state transition probabilities, $G(\cdot)$

- 2. Express $\int_{\epsilon_{it}} V(O_{it}, \varepsilon_{it}) dF(\epsilon_{iat})$ as the function of $CCP_0(O_{it})$
- 3. Compute expected $E_{O',\varepsilon'|O_{it},a_{it}}V(O',\varepsilon')$ using $G(\cdot)$
- 4. Use Berry [1994] inversion to estimate utility parameters

Details

Estimation Results: $\alpha_{G,s}$

Figure 9: Estimates of Preference for Stage Play, $\alpha_{G,s}$

- Increasing over the first 20 periods of the game
 - Aligned with the design: the first 10-15 stages are relatively simple to complete

Even at later stages, systematically higher play utility from harder

Estimation Results: The Rest of

Table 5: Estimates of Preference for Loot Boxes and Winning in the Game								
	Non-W	Vhales	Whales					
	Estimate	S.e.	Estimate	S.e.				
One loot box $(\alpha_{L,1})$	-1.7180	(0.4514)	0.1125	(0.1844)				
State dependence (η)	1.1262	(0.2751)	2.0187	(0.2671)				
Eleven-pack loot box $(\alpha_{L,11} - \alpha_{L,1})$	0.0312	(0.4311)	-0.4776	(0.1913)				
Payment (γ)	-0.1954	(0.0098)	-0.1545	(0.0039)				
Lose the game $(-\beta)$	-0.4293	(0.1136)	-1.4488	(0.0846)				

Standard errors are computed using Bayesian bootstrap, with clustering (draws of observation weights) done at the stage level.

► For 🐳:

- Stronger preference for loot boxes
- Stronger state dependence
- Lower preference for eleven-pack loot boxes
- Less price responsive
- Care about losing

Heterogeneity by Event Plays Heterogeneity within whales and non-whales

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

► A: Baseline future expected utility

$$\tilde{V}_{\text{baseline}}(O) = \ln \begin{pmatrix} \left(\left(\exp\left(u(a=1) + E_{R',\hat{O}',\epsilon'|O,a=1}V\left(O',\epsilon'\right)\right) \right) \\ & \left(\frac{1}{\left(\frac{1}\right)}{\left(\right)}{\left(\frac{1}{\left(1}{\left(\frac{1}{\left(\frac{1}{\left(\frac{1}{\left(\frac{1}{\left(\left(\frac{1}{\left(\frac{1}{\left(\frac{1}{\left(\frac{1}{\left($$

Compare to utilities that shut down the two mechanisms, holding future actions fixed

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

B: No option to open loot boxes

B: No option to open loot boxes

$$\tilde{V}_{n,l.}(O) = \ln \begin{pmatrix} \left(\left(\exp\left(u(a_0 = 1) + E_{R',\hat{O}',\epsilon'|O,a_0=1}V\left(O',\epsilon'\right)\right) \\ + E_{R',\hat{O}',\epsilon'|O,a_0=1}V\left(O',\epsilon'\right) \\ + E_{xit game} \end{pmatrix} \begin{pmatrix} \exp\left(u(a = 0)\right) \\ + E_{xit game} \end{pmatrix} \end{pmatrix}$$
(11)

C: No rarity adjustments from opening loot boxes

$$\tilde{V}_{n.f.}(O) = \ln \begin{pmatrix} \left(\exp\left(\cdots\right) + \sum_{\tilde{a} \in \{2,3\}} \exp\left(u(a - \tilde{a})\right) + E_{R}, \tilde{O}', \varepsilon' \mid O, a = \tilde{a} \\ \varphi_{\text{laying stage game}} \right) + \exp\left(\cdots\right) \\ \varphi_{\text{laying stage game}} + \sum_{\tilde{a} \in \{2,3\}} \exp\left(u(a - \tilde{a})\right) + E_{R}, \tilde{O}', \varepsilon' \mid O, a = \tilde{a} \\ \varphi_{\text{laying stage game}} + \exp\left(\cdots\right) \\ \varphi_{\text{laying stage game}} + \exp\left(u(a - \tilde{a})\right) + E_{R}, \tilde{O}', \varepsilon' \mid O, a = \tilde{a} \\ \varphi_{\text{laying stage game}} + \exp\left(\cdots\right) \\ \varphi_{\text{laying stage game}} + \exp\left(u(a - \tilde{a})\right) + E_{R}, \tilde{O}', \varepsilon' \mid O, a = \tilde{a} \\ \varphi_{\text{laying stage game}} + \exp\left(\cdots\right) \\ \varphi_{\text{laying stage game}} + \exp\left(u(a - \tilde{a})\right) + E_{R}, \tilde{O}', \varepsilon' \mid O, a = \tilde{a} \\ \varphi_{\text{laying stage game}} + \exp\left(u(a - \tilde{a})\right) \\ \varphi_{\text{laying stage game} + \exp\left(u(a - \tilde{a}$$

B: No option to open loot boxes

$$\tilde{V}_{n,l.}(O) = \ln \begin{pmatrix} \left(\left(\exp\left(u(a_0 = 1) + E_{R',\hat{O}',\epsilon'|O,a_0=1}V\left(O',\epsilon'\right)\right) \left(+ \exp\left(u(a = 0)\right) \right) \\ & \underbrace{\left(\frac{P_{laying stage game}}{P_{laying stage game}} \right) \left(\frac{11}{E_{xit game}} \right) \end{pmatrix}$$

C: No rarity adjustments from opening loot boxes

$$\tilde{V}_{n.f.}(O) = \ln \begin{pmatrix} \left(\exp\left(\cdots\right) + \sum_{\tilde{a} \in \{2,3\}} \exp\left(u(a = \tilde{a}) + E\right) + E_{R,\tilde{O}',\epsilon'|O,a=\tilde{a}} V\left(O',\epsilon'\right) + \exp\left(\cdots\right) \\ \left(\exp\left(u(a = \tilde{a}) + E_{R,\tilde{O}',\epsilon'|O,a=\tilde{a}} V\left(O',\epsilon'\right) + \exp\left(\cdots\right) + E_{R,\tilde{O}',\epsilon'|O,a=\tilde{a}} V\left(O',\epsilon'\right) + E_{R,\tilde{O}$$

D: Similarly, shut down the state dependence in opening loot boxes

Functional vs. Direct Loot Box Value: Results

Table 8: Decomposition of the Loot Box Value									
	Overall Stage 5 Stage 50 Fir								
	Non-Whales	Whales	Non-Whales	Whales	Non-Whales	Whales	Non-Whales	Whales	
Functional value	89.51	3.04	93.73	21.92	6.72	3.91	0.24	0.08	
	(2.67)	(0.72)	(1.76)	(3.58)	(4.57)	(0.95)	(0.13)	(0)	
Direct value	10.49	96.96	6.27	78.08	93.28	96.09	99.76	99.92	
	(2.67)	(0.72)	(1.76)	(3.58)	(4.57)	(0.95)	(0.13)	(0)	
State Dependence	2.50	33.38	2.04	37.17	30.89	42.26	24.56	29.71	
	(0.71)	(3.08)	(0.58)	(6.23)	(7.46)	(4.22)	(7.31)	(2.86)	
Option to loot	7.98	63.58	4.23	40.90	62.40	53.84	75.20	70.21	
	(2.43)	(2.52)	(1.53)	(3.56)	(9.8)	(3.46)	(7.4)	(2.86)	

Standard errors are computed using Bayesian bootstrap, with clustering (draws of observation weights) done at the stage level.

Non-whales get 90% of loot box value from the functional mechanism

- get only 3% of the loot box value from the functional mechanisms and 33.4% from state dependence
- Lower functional value in later stages

Decomposition with Heterogeneity

Counterfactuals: Product Design

	Revenue			# of \$	# of Stage Games Played			Share of Consumers At Stage 20		
	Overall	Non-whales	Whales	Overall	Non-whales	Whales	Overall	Non-whales	Whales	
Harder										
Win prob -50%	23.49	0.05	659.77	0.28	0.18	2.89	0.21	0.15	1.93	
Win prob -40%	15.92	0.05	446.70	0.37	0.29	2.52	0.33	0.27	1.95	
Win prob -30%	7.24	0.06	202.17	0.49	0.42	2.3	0.47	0.41	1.97	
Win prob -20%	3.33	0.07	91.86	0.64	0.58	2.14	0.63	0.58	1.98	
Win prob -10%	2.23	0.07	61.02	0.81	0.77	2.04	0.82	0.77	1.98	
Current win prob	1.00	0.07	26.21	1.00	0.96	1.96	1.00	0.96	1.98	
Win prob $+10\%$	0.73	0.07	18.26	1.05	1.02	1.91	1.05	1.02	1.98	
Win prob $+20\%$	0.62	0.07	15.52	1.06	1.03	1.88	1.07	1.04	1.98	
Win prob $+30\%$	0.58	0.06	14.58	1.06	1.03	1.87	1.08	1.05	1.98	
Win prob $+40\%$	0.55	0.06	13.85	1.06	1.03	1.86	1.1	1.06	1.98	
Win prob +50%	0.54	0.06	13.58	1.06	1.03	1.85	1.1	1.07	1.98	
Easier										

Table 9: Simulations under varying game stage win probabilities

Evaluate outcomes under the counterfactual game difficulty

Figure 10: Revenue and Consumer Surplus under Loot Box Bans and Spending Caps

- 1. Baseline:
 - Firm gets 7.4% of the total surplus
 - Players: 6.3% of the total surplus from opening loot boxes, 86.3% from playing stages
 - ▶ For regular players: 1.8% from l.b. and 97.8% from playing

1 名臣 1

э

For \$\$\vee\$: 24.3% from l.b. and 39.3% from playing

Figure 10: Revenue and Consumer Surplus under Loot Box Bans and Spending Caps

- 2. A blanket ban on loot boxes:
 - Zero revenue and CS from loot boxes (by construction)
 - Regular players get 25.4% less CS from playing stages
 - Due to the complementarity of loot boxes and the gameplay

Figure 10: Revenue and Consumer Surplus under Loot Box Bans and Spending Caps

- 3. A ban on paid loot boxes:
 - Zero revenue (by construction)
 - ▶ Regular players get 2.1% less CS from playing stages
 - \blacktriangleright is get 50% less CS from opening loot boxes

Figure 10: Revenue and Consumer Surplus under Loot Box Bans and Spending Caps

- 4. \$100-\$500 spending limits:
 - Regular players not affected (never spend above \$100)
 - get the same CS from playing
 - ▶ \$100-\$500 caps:
 - 🐳 get 84%-99.9% of CS from loot boxes vs. baseline

- the firm gets 24.3%-86.5% of PS

Conclusions

- 1. Loot boxes bring different types of value for regular and high-spending players
 - Mostly (90%) complementary to the game for regular players \rightarrow "part of a game of skill"
 - Mostly (97%) direct values for high-spending players \rightarrow "a stand-alone game"
- 2. Current game design (complexity) trades-off the engagement from regular players and revenues from high-spending players
- 3. Use the estimates to evaluate loot box bans and spending limits (per consumer) on consumer and producer surplus

Thank you!

・ロト・日本・ヨト・ヨー うへで